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ABSTRACT 

Analytical ultracentrifugation is one of the classical techniques for the study of protein interactions and 

protein self-association.  Recent instrumental and computational developments have significantly 

enhanced this methodology.  In the present paper, new tools for the analysis of protein self-association 

by sedimentation velocity are developed, their statistical properties are examined, and considerations 

for optimal experimental design are discussed.  A traditional strategy is the analysis of the isotherm of 

weight-average sedimentation coefficients sw as a function of protein concentration.  From theoretical 

considerations, it is shown that it integration of any differential sedimentation coefficient distribution 

c(s), ls-g*(s), or g(s*) can give a thermodynamically well-defined isotherm, as long as it provides a 

good model for the sedimentation profiles.  To test this condition for the g(s*) distribution, a back-

transform into the original data space is proposed.  Deconvoluting diffusion in the sedimentation 

coefficient distribution c(s) can be advantageous to identify species that do not participate in the 

association.  Because of the large number of scans that can be analyzed in the c(s) approach, its sw 

values are very precise and allow extension of the isotherm to very low concentrations.  For all 

differential sedimentation coefficients, corrections are derived for the slowing down of the 

sedimentation boundaries caused by radial dilution.  As an alternative to the interpretation of the 

isotherm of the weight-average s-value, direct global modeling of several sedimentation experiments 

with Lamm equation solutions is studied.  For this purpose, a new software SEDPHAT is introduced, 

allowing the global analysis of several sedimentation velocity and equilibrium experiments.  In this 

approach, information from the shape of the sedimentation profiles is exploited, which permits the 

identification of the association scheme, and requires fewer experiments to precisely characterize the 

association.  Further, under suitable conditions, fractions of incompetent material that are not part of 

the reversible equilibrium can be detected.   
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Introduction 

It has become increasingly obvious that reversible interactions of proteins are among the fundamental 

principles that govern their role and organization.  Reversible self-association is one of the more 

intricate, yet ubiquitous modes of interactions.  Self-association is frequently coupled to heterogeneous 

protein-protein interactions, and often represents an integral part of the reaction mechanism.  This 

highlights the importance of methods that allow the characterization of the thermodynamic properties 

of self-associating proteins in solution.  Among the classical techniques of physical biochemistry for 

studying protein association is analytical ultracentrifugation (1, 2) (for recent reviews, see, e.g., (3-8)).  

In the 1990s, the technique has experienced a renaissance (see, e.g. (8-12)), largely due to the ability to 

study reversible interactions in solution and the increasing interest in protein interactions.   

The present paper is concerned with two sedimentation velocity approaches – the method of 

isotherms of weight-average sedimentation coefficients and the analysis of the shape of the 

sedimentation boundary.  They focus on different aspects of the experiment and have evolved in 

parallel.  To understand their relationship, it is of interest to follow their historical development.  

Already in the 1930s, evidence for reversible protein interactions measured by sedimentation velocity 

was reported (1).  Following were more systematic studies of the concentration-dependence of the 

sedimentation coefficient, interpreted in the context of protein self-association.  These include, for 

example, studies of α-chymotrypsin (13, 14), insulin at low pH (15), casein (16), hemoglobin (17) and 

others (2).  In parallel, the theoretical framework of sedimentation velocity of self-associating systems 

was rapidly developed.  From the work of Tiselius, it was known that in moving boundary transport 

experiments no resolution of boundaries will occur if the components are in a rapid equilibrium 

compared to the rate of migration, in which case a weight-average migration velocity will be observed 

(18).  In the 1950s, Baldwin has shown that the migration of the second moment position of the 

sedimentation boundary corresponds to the weight-average s-value of the solute composition in the 



 4

plateau region (19), which was related to the chemical equilibrium (via mass action law) between 

monomeric and oligomeric species by Oncley et al. (15) and Steiner (20).   

With regard to the shapes of the sedimentation boundary, Gilbert examined the ideal case of 

negligible diffusion and fast chemical rates.  He quant itatively predicted the features of such ‘ideal’ 

boundaries and found qualitative differences between monomer-dimer and higher self-association 

schemes (21).  Examples for the application of Gilbert theory are the self-association of α-

chymotrypsin (22) and β-lactoglobulin (23).  It was also applied by Frigon and Timasheff in the 

detailed analysis of the ligand- induced self-association of tubulin, which also included hydrodynamic 

models of the oligomers (24, 25) (a topic reviewed by Cann (26)).  Since then, the analysis of protein 

self-association by the concentration dependent weight-average sedimentation coefficients, sometimes 

combined with hydrodynamic models and qualitative interpretation of the boundary shape has been 

applied in many studies (27-33) and others (for a recent review of this approach, see (34)).   

As pointed out by Fujita, the diffusion-free approximation of Gilbert-theory represents a limitation 

in the interpretation of actual data (35).  This was overcome with numerical solutions of the Lamm 

equation (the transport equation describing the coupled sedimentation and diffusion process (36)) (37-

42), which was also extended to kinetically controlled self-associations and applied to hetero-

associations (43-46).  Numerical or approximate analytical Lamm equation solutions coupled with 

non- linear regression can now be used routinely to model experimental data (40, 41, 47-51).  Algebraic 

noise decomposition permits direct modeling of the interference optical data by calculating the time-

invariant and radial- invariant signal offsets (52).  This allows to take full advantage of the excellent 

signal-to-noise ratio of the laser interferometry detection system, and, similarly, to perform separate 

experiments in each sector of the centrifugal cell when using the absorbance scanner (53).  In recent 

years, some experience with modeling Lamm equation solutions for self-associating proteins to 

experimental data has been gained (32, 41, 54-59).  While the importance of globally modeling 
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experiments from different loading concentrations has become clear, a more systematic study of useful 

experimental conditions, analogous to those available for sedimentation equilibrium studies (for 

example, (60-63) and others) is still lacking. 

Modern computational techniques have also led to considerable improvements in the 

determination of weight-average sedimentation coefficients via differential sedimentation coefficient 

distributions, which have the potential to discriminate different sedimenting species.  In 1992, Stafford 

has shown how an apparent sedimentation coefficient distribution g(s*) can be calculated from a 

transformation of the time-derivative of the sedimentation profiles (64, 65).  This approach allows to 

extract information from many scans at once, and due to the use of pair-wise differencing is well 

adapted to the time- invariant noise structure of the interferometric detection system.  It has been 

widely used, and was reviewed in the context of weight-average s-values by Correia (34).  More 

recently, it was shown how an apparent sedimentation coefficient distribution ls-g*(s) can be 

calculated directly from least-squares modeling of the sedimentation profiles, permitting higher 

precision through the use of an increased data basis and permitting wider distributions and more 

general application (66).  A sedimentation coefficient distributions c(s) with significantly higher 

resolution can be achieved through direct modeling and deconvolution of diffusional broadening of a 

complete set of sedimentation profiles (67-69).  In general, differential sedimentation coefficient 

distributions are particularly powerful for more complex protein interaction processes.  Recent 

examples include the ligand- induced self-association of tubulin (58 , 70), amyloid formation (71) and 

entanglement of amyloid fibers (72) and others (33, 54, 73, 74).   

Despite the obvious utility of the sedimentation coefficient distributions, some theoretical and 

practical aspects still have to be examined.  For example, it is unclear how they relate to a 

thermodynamically well-defined weight-average sedimentation coefficient, and from which 

experimental data sets they may be derived.  In this regard, the ls-g*(s) and c(s) distribution are of 
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particular interest as they apply Bayesian principles such as maximum entropy regularization for 

selecting the most parsimonious distribution consistent with the raw data.  Also, the increased 

precision of the experimental sedimentation data warrants a more detailed study of the effect of 

boundary deceleration caused by the radial dilution of the sample in the sector-shaped ultracentrifuge 

cell, and how this applies to the different sedimentation coefficient distributions.   

 These topics are addressed in the present paper.  It analyzes and compares the two major strategies 

for characterizing protein self-association by modern sedimentation velocity, which are the 

determination of an isotherm of weight-average sedimentation coefficients as a function of protein 

concentration and global non- linear regression of the sedimentation data with Lamm equation models.  

A practical example of the latter approach will be published in the context of the biophysical 

characterization of the self-association of gp57A of the bacteriophage T4 (59).  Several new tools are 

introduced for both strategies.  Although the present work focuses on the analysis of protein self-

association, most of the conclusions will also apply to the study of heterogeneous protein interactions 

(after accounting for different signal contributions of the different species).  

Theory and Modeling 

Weight-average sedimentation coefficients for concentration dependent solutes 

In this section, first, the definition and theoretical relationships underlying weight-average 

sedimentation coefficients sw are recapitulated.  This will lead to a new definition of an ‘effective’ 

concentration c* for interpreting sw(c*) of rapidly equilibrating concentration dependent systems when 

sw is derived from sedimentation coefficient distributions.   It will also lead to the result that sw can be 

obtained by integration of the recently described differential sedimentation coefficient distribution c(s) 

and ls-g*(s).  Importance is given to the experimental conditions required for the practical application. 

The evolution of the concentration distribution throughout the sector-shaped cell for a single 

ideally sedimenting species with sedimentation coefficient s and diffusion coefficient D is described by 
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the Lamm equation  
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(36).  For a sedimenting boundary that exhibits a plateau, i.e., a vanishing concentration gradient 

( ) 0pc r r∂ ∂ =  at a plateau radius value rp (non-standard loading configurations are excluded), the 

multiplication of Eq. 1 with r and integration over the radial coordinate from the meniscus rm to the 
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(Eq. 2.229 p. 116 in (35)), where s(cp) is the sedimentation coefficient at the plateau concentration cp at 

rp.  As illustrated by Schachman (2) (p. 65), the left-hand side describes the loss of mass of 

sedimenting material between meniscus and the plateau region, due to transport flux through an 

imaginary cross-section of the solution column at rp.  For sedimenting multi-component mixtures, this 

total flux is used to define the weight-average sedimentation coefficient sw.  It should be noted that this 

definition is completely independent of the boundary shape.  Important in practice is that, because of 

the vanishing flux at the meniscus, the definition of sw via integration of Eq. 2 does not require the 

meniscus region to be depleted, in contrast to the alternate derivation in (3).   

 It is of theoretical and practical interest to study how sw relates to the displacement of the 

sedimentation boundary.  According to the second moment method, the mass balance integral in the 

definition of sw (r.h.s. of Eq. 2) can be expressed by an equivalent boundary position rw of a single non-

diffusing species with sedimentation coefficient sw(cp) (2, 35), with  
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(Eq. 11 in (2)).  With a slight modification of the derivations by Fujita (35) an explicit expression of 
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the weight-average sedimentation coefficient can be derived as 
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An analogous expression is given by Fujita (Eq. 2.234 in (35)) and was derived by Baldwin (19), using 

an integral over the concentration gradient.  Similar to Eq. 2, in Eq. 4 the weight-average 

sedimentation coefficient sw at the plateau is related with the total depletion of material between 

meniscus and an arbitrary plateau radius rp.  This depletion can be calculated directly from each scan at 

different times t, and is independent of the boundary shape.  The weight-average sedimentation 

coefficient is taken at the plateau concentration at the time of the scan (19).  It should be noted that Eq. 

4 only considers the instantaneous rate of transport across a boundary, and is therefore completely 

independent of the history of the concentration distribution or the meniscus position.  It only requires 

the transport at the times considered to be a result of free sedimentation.  

 For the present purpose of calculating sw for a concentration-dependent system from 

sedimentation coefficient distributions (e.g. c(s) (67), ls-g*(s) (66) and g(s*) (64, 65)), it is useful to 

bring Eq. 4 into a different form.  The reason is that these sedimentation coefficient distributions are 

based on equations that imply the entire sedimentation process from the start of the centrifugation 

experiment, rather than the change in mass balance only at the time of the scans.  This is also true for 

the dcdt method to obtain g(s*), as the differential is only used to eliminate the constant signal offsets.  

Therefore, we integrate Eq. 4 with respect to the time from 0 to the time T  (the time of the scan 

considered), which gives 
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If the sedimentation coefficient is concentration independent, sw* equals sw.  For concentration-

dependent sedimentation, however, sw* is only an apparent weight-average sedimentation coefficient 

that, strictly, is not a constant because the radial dilution changes the plateau concentration and results 

in corresponding changes in the chemical composition (1, 35).  This also implies a dependence on the 

reaction kinetics of the system.   

 The difference between Eq. 4 and 5 can be illustrated, for example, with a rapid self-associating 

monomer-n-mer system in the limit of an infinite solution column.  Because of the radial dilution, with 

time such a system would completely dissociate and the weight-average sedimentation coefficient sw 

from Eq. 4 would assume the monomer s-value.  Nevertheless, if transforming the boundary position 

r(t) into an apparent s-value s* (such as in the g*(s) method (64)), this transformation would also 

reflect the period when the molecules migrated as the assembled species.  This is taken into account in 

Eq. 5.  For typical experimental conditions, radial dilution amounts only to ~ 20-30%, and 

corresponding changes in sw are generally small.  However, they can be distinctly larger than the 

measurement error, and the corresponding systematic changes in sw* have been noted already by 

Svedberg (1).   

 We suggest an approximate correction for the case that the change in sw(c) is not kinetically 

limited and can be approximated over a small concentration range as a linear function of concentration.  

In this case, we can separate sw from the time integral in Eq. 5 
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The average plateau concentration from time 0 to T can be calculated using the Lamm equation in the 

absence of concentration gradients  

ppw
p ccs
dt

tdc 2)(2
)(

ω−=            (7) 



 10

which leads to  
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This means that for systems that locally approach chemical equilibrium faster than the time-scale of 

sedimentation, the measured apparent weight-average sedimentation coefficient sw* from a sample 

with loading concentration c0 is a good approximation of the true weight-average sedimentation 

coefficient at a reduced concentration c*. (For analysis of multiple scans at different Ti, the average of 

all c*(Ti) should be taken).  For slow equilibrating systems, however, sw* will reflect the equilibrium 

composition at loading concentration c0.  For systems with unknown kinetics, it is possible to assign 

the concentration an uncertainty from c0 to c*, and to analyze the isotherm sw(c) by treating the c-

values as unknowns within these bounds.   

 It is possible to generalize the above treatment to a general mixture of k reacting components.  In 

this case, the Lamm equation can be extended by local reaction fluxes qk (35).  One can still define the 

weight-average sedimentation coefficient in a similar way by considering the evolution of the total 

concentration  
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As long as the total signal from the chemical reaction is conserved (throughout the observed region 

from meniscus to rp) it is 0=∑k kq , and the extra term in Eq. 9 is identically zero.  Therefore, we 

arrive again at a weight-average sedimentation coefficient 

 
∑

∑
=

k
pk

k
pkk

pkw c

cs

cs
,

,

, )(           (10) 

that reflects only the weighted average of the s-values of the composition at the plateau.  This shows 
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that sw is not affected by chemical equilibria or reaction kinetics, except to the extent of the problem 

arising from decreasing plateau concentrations discussed above.   

Its current practice to determine the weight average sedimentation coefficients not from the mass 

balance and integration of the sedimentation boundary, but from differential sedimentation coefficient 

distributions c’(s), which are defined as a superposition of independently sedimenting species 

 ∫= dstrsctrctot ),,('),(            (11) 

Since the evolution of ctot is described by a superposition of Lamm equations, the definition of sw can 

be obtained by extension of Eq. 2  
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with cp’ denoting the differential sedimentation coefficient distribution at the plateau (2).  If each 

species of the distribution c’(s) sediments independently of concentration, which is assumed in all 

currently known sedimentation coefficient distributions, it follows that in the plateau cp’(s) ~ c’(s) and   

∫
∫=
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sdsc
cs pw
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, i.e., the weight-average sedimentation coefficient can be calculated by integrating the differential 

sedimentation coefficient distribution.   

It should be noted that the diffusion coefficient does not occur in Eq. 12, so that the result Eq. 13 

is equally valid for any differential sedimentation coefficient distributions, independent of diffusion.  

This includes c(s) (67, 68), ls-g*(s) (66) and g(s*) from dcdt (64, 65).  Another consequence of this is 

the invariance of the sw value obtained from the c(s) distribution calculated with any value of f/f0 (or 

other prior knowledge).  The only requirement is that the distribution provides a good description of 

mass balance between meniscus and rp, for which a good fit of the sedimentation boundary (i.e. the 

experimentally observed sedimentation profiles) is sufficient.  Similarly, when modeling sedimentation 
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data of an interacting system empirically with a size-distribution, a good fit (and ident ical mass 

balance) is also sufficient for the sw value from Eqs. 12 and 13 to be identical to the correct weight-

average sedimentation coefficient of the interacting system.  However, sw may still depend on the 

plateau concentration cp and represent only an apparent weight average sedimentation coefficient sw* 

as described above.  In contrast, the integral sedimentation coefficient distribution G(s) (75) does not 

lend itself to the mass balance considerations because it considers the boundary profiles only 

normalized relative to the plateau level.  The same result holds for the integral sedimentation 

coefficient distributions G(s) when calculated from the extrapolation of ls-g*(s) to infinite time (68).   

 Because a large number of scans covering an extended time period of the sedimentation process 

can be analyzed with ls-g*(s) and c(s), and because c(s) can be applied to a variety of experimental 

conditions and lead to a high resolution of small species, it is worthwhile to reconsider the assumptions 

under which the (apparent) weight-average sedimentation coefficient was defined.  No depletion at the 

meniscus is required.  In principle, a solution plateau needs to be established for sw to represent a 

meaningful quantity, since if there were concentration gradients, diffusion fluxes will artificially 

increase or decrease the sw values.  On the other hand, if a plateau can be established in the first several 

scans under consideration, and if the corresponding sedimentation boundaries are modeled well, 

extension of the time range to include later scans will leave the sw value invariant.  Such extension may 

increase the resolution in the sedimentation coefficient distribution, for example, for the identification 

of slowly sedimenting species contributing to sw.  However, if the definition of Eq. 13 is used for 

calculating an sw value on the basis of a sedimentation coefficient distribution, the integration range 

should be limited to species that do not exhibit significant back-diffusion.  Otherwise, the 

corresponding concentration will be ill-defined and the uncertainty may become much larger than the 

range from c0 to c* indicated above. 

 In summary, it is shown above that integration of any of the differential sedimentation coefficient 
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distributions can be used to calculate sw, under the condition that a good model of the sedimentation 

profiles is achieved.  For interacting systems, the relevant concentration is not the plateau 

concentration.  For systems with a slow kinetics relative to sedimentation, it is the loading 

concentration, while for fast reversible systems it is the effective time-averaged plateau concentration 

c* (Eq. 6).  sw is independent of the boundary shape, but requires that the sedimentation process is free 

of convection for the entire experiment.  The meniscus does not need to be cleared, and sw can be 

determined from experimental data that do not exhibit plateaus throughout, but integration of the 

sedimentation coefficient distribution over species that exhibit back-diffusion should be avoided for 

interacting systems. 

Data analysis 

For the data analysis based directly on the second moment, Eqs. 4, 5 and 8 were implemented in the 

software SEDFIT (combined with routines extracting a stable least-squares estimate of cp for each 

scan).  For both the differential (Eq. 4) and the integral form (Eq. 5) the average values for sw are 

calculated, and the corresponding radial dilution factors (i.e., the plateau concentrations or c* (Eq. 8)) 

are also averaged for all scans considered in the analysis.   

The differential sedimentation coefficient distributions c(s) (67) and ls-g*(s) (66), which are based 

on direct models of the sedimentation data with Lamm equation solutions with and without the 

deconvolution of diffusion, respectively, were also calculated with SEDFIT.  In brief, in the c(s) 

method the concentration distributions of a single non- interacting species χ(s,D,r,t) is calculated by the 

Lamm equation Eq. 1 for a large number of sedimentation coefficients ranging from smin to smax.  For 

each s-value, the corresponding diffusion coefficient is estimated from a weight-average frictional ratio 

(f/f0)w as  

( )( ) ( )( )3 2 1 21 2
0

2
( ) 1

18 w
D s kT s f f v vη ρ

π
− −−= −      (14) 
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(69).  The best- fit distribution c(s) is determined by a linear least-squares fit to the experimental data 

a(r,t)  

max

min

( , ) ( ) ( , ( ), , )
s

s

a r t c s s D s r t dsχ≅ ∫          (15) 

This Fredholm integral equation is stabilized with additional constraints derived from maximum 

entropy or Tikhonov-Phillips regularization, which provides the simplest distribution that is consistent 

with the available data (69).  The extent of regularization is scaled by a statistical criterion to ensure 

that the decrease of the fit quality imposed by the constraint is not significant on a one standard 

deviation confidence level.  The value for the weight-average frictional ratio (f/f0)w is determined 

iteratively from the experimental data by a non- linear regression, which also may include the precise 

meniscus position of the solution column (68).  An analogous procedure with constant D = 0  is used 

for calculating the apparent sedimentation coefficient distribution ls-g*(s) (66).  Corrections for the 

solvent compressibility are available (42).   

The g(s*) distributions based on the time-derivative method were calculated with the software 

DCDT+ (J.S. Philo, 3329 Heatherglow Ct., Thousand Oaks, CA 91360) (65).  A transformation of the 

so calculated g(s*) into a direct model of the sedimentation profiles was included as a function in 

SEDFIT, by building a step-function model as described in (66) from the data exported from g(s*).  In 

order to rebuild the degree of freedom from the differencing of pair-wise scans in dcdt, the 

sedimentation model can be combined with systematic noise calculation as described in (52, 68).   

 The isotherm of the weight-average sedimentation coefficient for a self-associating system can be 

written as (24) 

0,
1
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where s0,i are the species sedimentation coefficients at infinite dilution, ks,i their hydrodynamic non-

ideality coefficient, and Ki the association constants, respectively (with K1 = 1).  Because the values of 

ks,i cannot easily be determined separately for each species, the second equation makes the assumption 

that the hydrodynamic non- ideality coefficients for all species can, in a first approximation, be 

described by an average value (24).  This will be true either at not too high concentrations, or if the 

different species are not too dissimilar in shape, or for moderately weak associations where the largest 

species dominate the sedimentation at higher concentration. 

Global modeling with the software SEDPHAT 

For global modeling, an extension of the software SEDFIT was programmed.  Like SEDFIT, it allows 

modeling of experimental sedimentation profiles by direct least-squares modeling of the sedimentation 

boundaries, using finite element solutions of the Lamm equation with static (39, 40, 76) and moving 

frame of reference (41), and allowing for algebraic elimination of the systematic noise (52).  For 

rapidly associating systems, finite element solutions of the Lamm equation  

( ) ( )2 21
( ) ( )w g

c c
s c r r c D c r r

t r r r
ω

∂ ∂ ∂  = − −  ∂ ∂ ∂        (17) 

with local weight-average sedimentation coefficients sw and gradient-average diffusion coefficients Dg 

were calculated as described previously (38, 41).  For Lamm equation solutions with hydrodynamic 

repulsive non-ideality, the local weight average sedimentation coefficients were multiplied with a 

factor 1/(1+ksctot(r)) (77), as described in Eq. 16.  To allow global modeling of different experiments, 

there are several significant differences in the organization of the program.  

 In SEDPHAT, different experiments are organized in different channels, each consisting of one set 

of sedimentation profiles of a certain experiment type.  For a single channel, the data can be either 

many scans from the time-course of a single sedimentation velocity experiment, a set of sedimentation 

equilibrium scans from the same cell obtained at different rotor speeds (implying mass balance), or a 
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single equilibrium scan.  Currently, up to 10 channels can be defined (although this can be extended).  

Also stored are the experimental parameters such as solution density and viscosity, optical pathlength, 

solute extinction coefficient, meniscus, bottom, and the expected (or measured) noise of data 

acquisition.   

To generate a global model, a set of sedimentation profiles is calculated using the appropriate 

sedimentation model for each channel.  Global parameters are s20, D20, log Ka and/or M values, and the 

partial-specific volume of the solute.  In contrast to SEDFIT, the global parameters are corrected to 

20,w values, which are transformed to each of the experimental conditions with the Svedberg equation 

and the usual solvent correction formulas (1, 8, 78).  Local parameters are, for example, 

concentrations, local meniscus and bottom, and/or systematic noise parameters, and can be separately 

defined for each channel.  As global measure of goodness-of- fit, the reduced chi-square, χr
2 , is used, 

with each experiment weighted with the individual error of data acquisition.  χr
2 approaches unity for 

an ideal model (79).  For non- linear regression, both simplex and Levenberg-Marquardt algorithms 

were implemented (80).  Error estimates can be derived through conventional F-statistics, by using a 

covariance matrix, or with Monte-Carlo statistics (80, 81).  Floating parameters can be any 

combination of local or global parameters.  Local concentrations can be defined to be common to a 

subset of experiments, permitting the extinction coefficient to be calculated.  Similarly, the meniscus 

and bottom positions and/or extinction coefficients can be defined as local parameters shared by a 

subset of data channels.  If the partial-specific volume is treated as a floating parameter for 

experiments at different densities, global analyses analogous to the Edelstein-Schachman technique 

(82, 83) can be performed.  

Notes on the terminology used 

 The original raw sedimentation data that consist of the concentration distributions as a function of 

radius and time are referred to as the ‘sedimentation profiles’.  Commonly, for large molecules at 



 17

sufficient rotor speeds, the sedimentation profiles form a sedimentation boundary, which migrates 

along the centrifuge cell.  Modeling of the sedimentation velocity experiment can take place by fitting 

a model (e.g. the Lamm equation) to the sedimentation profiles.  This is sometimes referred to as a 

‘direct boundary model’.  However, to minimize confusion, in the present communication the term 

‘model of the sedimentation profile’ will be used instead of ‘boundary model’ whenever possible.  The 

c(s) distribution is such a ‘direct boundary model’, and usually provides a good description of the 

sedimentation profiles (i.e., the sedimentation boundary), as is the global fitting of Lamm equation 

solutions with SEDPHAT described below.  In contrast, the g(s*) distribution is derived from a 

transformation dcdt of a subset of the sedimentation profiles into a space of apparent sedimentation 

coefficients.  In this sense, it does not provide a ‘boundary model’ (a model for the original 

sedimentation profiles).  However, because g(s*) and ls-g*(s) consider the migration of the 

sedimentation boundary as if it was only a result of sedimentation, the ir shape provides a good 

description of the boundary shape (in the space of apparent sedimentation coefficients).  Commonly, 

therefore, the g(s*) distribution from dcdt will reflect the boundary shape, but is not a boundary model, 

and conversely, the c(s) distribution will provide a boundary model, but the shape of c(s) has no direct 

resemblance with the boundary shape.  It should be noted that both the c(s) distribution and the Lamm 

equation modeling of the sedimentation profiles with SEDPHAT of course depend on and utilize the 

shape information of the sedimentation boundary.  Because ls-g*(s) is derived from a least-squares 

modeling of the sedimentation profiles, it reflects the boundary shape and at the same time is also a 

‘direct boundary model’.  As shown in the present paper, a similar ‘boundary model’ in the original 

data space (i.e. a model for the sedimentation profiles) can also be reconstructed for the g(s*) 

distribution.  From theory, the relevant criterion for an accurate sw value is that it is based on a good 

model of the sedimentation profile (‘boundary model’), whereas the representation of the ‘boundary 

shape’ is irrelevant for sw.  
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Results 

In order to explore the different analysis strategies for self-associating protein systems, we first 

simulated sedimentation profiles for a hypothetical protein of 100 kDa, with sedimentation coefficients 

of 5 S and 8 S for the monomer and dimer, respectively, and a dimerization constant of 5×105 M-1 

(Figure 1).   The isotherm of sw(c) is shown in Figure 1 based on the known parameters (solid line), 

and based on the integration of the differential sedimentation coefficient distributions g(s*), ls-g*(s), 

and c(s).  For the g(s*) analysis, the maximum numbers of scans were used which gave an estimated 

Mw limit larger than the dimer molar mass.  Some minor variations were observed dependent on the 

interval of scans.  The ls-g*(s) method allows a larger number of scans to be incorporated, resulting in 

slightly better precision, especially for data with low signal-to-noise ratio.  

  Figure 2 shows the c(s) distributions for the different concentrations.  Because the deconvolution 

of diffusion in the c(s) method, features can be visible in the c(s) distribution that are not apparent from 

the qualitative inspection of the shape of the experimentally observed, diffusion broadened 

sedimentation boundary.  This is the basis for the high resolution of c(s), which would lead to baseline-

resolved peaks for stable mixtures of monomer and dimer, even under conditions where they may not 

develop two separate boundaries (69).  However, the deconvolution of diffusion is based on the model 

with independent species but does not take into account the additional boundary broadening resulting 

from the chemical reaction.  Therefore, the application of c(s) to a rapidly reversible system results in 

‘apparent’ distributions, which have broad, concentration dependent peaks at positions intermediate to 

the monomer and dimer s-value (Figure 2).  (In practice, the concentration dependence of the peak 

position is a clear indication that the reaction takes place on the time-scale of sedimentation; in 

contrast, for a slow reversible system, the peaks would be sharper and at constant position and only the 

relative peak heights would vary with concentration.)  It should be noted that the peak positions do not 

coincide with the weight-average s-value.  However, as outlined in the theory section above, the 
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weight-average value obtained from integration of the c(s) distribution provides a thermodynamically 

well-defined sw value, because it provides a good description of the sedimentation profiles (rms 

deviation close to the noise) and therefore is suitable for mass balance considerations.  Consistent with 

this theoretical expectation, the so obtained sw values do coincide very well with the theoretical 

isotherm (circles in Figure 1).   

 In this context, it is also interesting to note that a single-species model generally does not fit the 

data well.  For example, for the data at 10 µM, a single-species fit results in an rms error of 44 % 

above the noise, with significant systematic deviations visible in a bitmap representation of the 

residuals (68).  As outlined in the theory section, for a precise determination of sw, it is important how 

well the sedimentation models fit the experimental data.  This makes an ad hoc application of a single 

species Lamm equation model not a good approach to determine sw.  For the g(s*) distribution, the 

goodness-of- fit is difficult to assess, because as a data transformation it does not provide a measure for 

how much the final distribution reflects the original data.  However, it is possible to use the calculated 

g(s*) distribution and back-transform them into an equivalent direct model of the sedimentation 

profiles using step-functions of non-diffusing species (as are used in the ls-g*(s) method).   Figure 3 

shows the sedimentation profiles at 10 µM, together with the back-transformed models of the 

sedimentation profiles.  When using an appropriately small number of scans, as judged by the 

recommended maximum molar mass in DCDT (Mwmax = 224 kDa), a good description of the 

sedimentation data is achieved and a good value for sw is obtained.  When the recommended number of 

scans is exceeded (Mwmax = 26 kDa), broadening of the back-transformed boundaries occurs, which 

for a large number of scans can be quite significant.  In the case shown in Figure 3 (dashed line), the 

rms error was 3.4fold the noise of the data, and the sw value was found to be 2.6% below the 

theoretical value.  This result suggests that the rms error of back-transformed boundaries could be used 

as an alternative, direct method for estimating the maximum number of scans to be included in a g(s*) 
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analysis.  In the present context, it confirms that a faithful representation of the original sedimentation 

data is a crucial criterion for the determination of precise weight-average sedimentation coefficients. 

 Since the theory suggests that the sedimentation coefficient distributions with deconvoluted 

diffusion effects, c(s), may be integrated to determine sw, we have studied conditions where the 

additional resolution can be advantageous.  Figure 4 shows c(s) profiles of our simulated model system 

in the presence of 20% contamination with a small species that does not participate in the self-

association.  This species is visible in the new peak at 3 S.  If such a peak can be clearly identified as 

contaminating species not participating in the self-association, it can be excluded from the integration 

range.  The resulting weight-average s-values for the interacting system remained within < 0.5% of the 

values obtained in the absence of the contaminating species. Clearly, since the distributions ls-g*(s) 

and g(s*) only reflect the shapes of the sedimentation boundary, they do not provide the resolution to 

locate the correct integration limits.  In contrast, diffusional deconvolution of c(s) can resolve the 

contaminating species.  Under some conditions for the lowest concentration data, we found that the 

peak of the small 3 S species appeared at a slightly higher s-value (data not shown).  This reflects a 

known property of the maximum entropy regularization that under some conditions, nearby peaks can 

‘attract’.  This happens only for the lowest concentration because of the very low signal-to-noise ratio 

and the corresponding high bias from the regularization.  Interestingly, despite this fact, the weight-

average sedimentation coefficient is not affected, which reflects the overruling importance of the 

quality of representation of the original sedimentation boundaries (which by design are unchanged by 

the regularization, within the predefined confidence level). 

 A closer look at the isotherms of sw for the different methods plotted against the loading 

concentration indicates that the obtained values are slightly lower than the expected isotherm for the 

system underlying the simulation (a section of the isotherm is expanded in Figure 5, full circles and 

squares).  This is consistent with the theory, which predicts radial dilution to lower the sw values.  The 
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use of concentration values based on average dilution during the entire sedimentation process (Eq. 8) 

provides a small, but effective correction for the radial dilution (open circles).  It was found to increase 

the precision by ~ 1%, which is significant compared to the precision of up to 0.1% that can be 

obtained in sedimentation velocity experiments.  For comparison, the differential second moment 

method requires the average plateau concentrations at the time of the scans, which are significantly 

different from the loading concentrations (Figure 5, open triangles).  We confirmed that the latter 

method is completely independent of the prior history of the sedimentation process and of the location 

of the meniscus position (data not shown).   (A disadvantage of this method, however, is that the 

baseline signal has to be known.)   

 Figure 6A illustrates why it is important to have the most precise isotherm values possible:  

Shown are the sw(c) data in comparison with isotherms assuming different values for the binding 

constant, and the monomer and dimer s-values.  It should be noted that the best-fit analysis of the sw(c) 

data results in parameters very close to those underlying the simulations (solid line).  However, it is 

apparent from Figure 6 that isotherms with very different binding constants differ surprisingly little 

from the calculated sw(c) data, and that small random or systematic errors in the sw(c) data can 

therefore lead to large errors in the calculated binding parameters.  This example also illustrates that a 

large concentration range is crucial.  The model system was designed to simulate approximately the 

largest concentration range ordinarily possible without introducing non-ideal sedimentation at high 

concentrations.  In contrast, Figure 6B shows the isotherm obtained for a weaker monomer-dimer self-

association studied at concentrations including the range where non- ideal sedimentation is highly 

relevant.  The negative concentration dependence at the higher concentrations broadens the isotherm 

and leads to the decrease of sw.  These data can be analyzed analogously if the sw(c) isotherms consider 

the hydrodynamic s(c) dependence s = s0 /(1+ksc).  A moderate correlation of the parameter values for 

ks, KA, and s2 was observed.  In any case, however, for the analysis of the sw(c) isotherm, it is highly 
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desirable to introduce independent information, for example, on the monomer sedimentation 

coefficient, the equilibrium constant, or limits for the monomer and dimer sedimentation coefficients 

(or their ratio) derived from hydrodynamic models.   

In this regard, the error estimates for the sw(c) data are of great importance.  Shown in Figure 6A 

are those obtained from DCDT+ for the g(s*) method (solid squares and error bars).  They are 

determined by the signal- to-noise ratio of the data (which are dependent on the wavelength for the 

simulated absorbance experiments (Figure 1)), and also by the maximum number of scans that can be 

used in the g(s*) analysis.  (It should be noted that the simulated data have a conservative estimate of 

0.01 OD for the experimental noise, which is on the order but may slightly exceed that commonly 

observed.)  In the absence of independent information on the monomer sedimentation coefficient, it 

would be highly desirable to incorporate experiments at lower concentration, but the lower signal-to-

noise ratio would result in unacceptably large error bars for the corresponding sw-value.  To address the 

lack of an error estimate in the software SEDFIT for the sw-values from integration of the ls-g*(s) and 

c(s) distributions, the Monte-Carlo simulations in SEDFIT were expanded to allow evaluation of the 

statistics of the sw-values.  These calculations can be performed relatively fast, since the two most 

time-consuming steps in the algebraic formalism of the distribution method are the calculation of the 

model- functions for each s-value and the normal matrix (67), which do not change for the Monte-Carlo 

iterations.  The resulting error estimates for the data shown in Figure 6 were < 0.005 S (including 

degrees of freedom for time-invariant noise), and on the average a factor 10 – 40 smaller than those 

from g*(s), reflecting the significantly larger data basis in the c(s) analysis.  This can be very 

significant, in particular, for the low concentration and low signal-to-noise data, and allows extending 

the concentration range of the isotherm data.  This is indicated as triangles in Figure 6, which show the 

sw-values obtained at concentrations as low as 0.025 µM (under conditions equivalent to those 

simulated in Figure 1, assuming detection at 230 nm).  Despite the small signal-to-noise ratio of only ~ 
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2:1 in the lowest concentration data, 40 scans with ~ 40,000 data points can be included in the analysis, 

resulting in relatively small statistical errors in the derived sw-values.  It was observed, however, that at 

signal-to-noise ratios < 5, both maximum entropy and Tikhonov-Phillips regularization of the 

distribution introduce a bias in the sw values with a magnitude of the order of the statistical errors.  This 

systematic error can be easily eliminated by removing the regularization.  For data at higher signal-to-

noise ratios, this error is negligible.   

As an alternative approach, global direct modeling of the sedimentation boundaries at different 

concentrations by solutions of the Lamm equations for fast reversible self-association was explored.  

Conceptually, this approach has a drawback in that it requires additional information on the diffusion 

coefficients of all species.  Also, the basic problem of correlations between the sedimentation 

coefficients and the equilibrium constants remains.  However, one can use information on known 

molar masses of the monomer and oligomers to calculate these diffusion coefficients with the 

Svedberg equation (1).  Beyond the possibility to identify the self-association scheme (see discussion), 

the promise of this approach lies in the shapes of the sedimentation profiles, which report on the 

sedimentation over a large concentration range in a single experiment, and the use of the rotor speed as 

an additional experimental parameter tha t balances the relative extent of sedimentation and diffusion.  

This approach is explored in the following by application to the model system.   

First, we compared the Lamm equation fits to the individual sedimentation velocity experiments.  

None of the data sets individually contained enough information to identify the correct parameters.  

For example, when the monomer sedimentation coefficient s1 was held constant at the wrong value of 

2 S while the other parameters s2 and KA were allowed to float, the impostor model produced an 

increase in the rms deviation for the 0.2 µM, 2 µM, and 20 µM data sets individually by only 2%.  

However, when taken together in a global analysis, an average increase of ~ 30% was observed, with 

clearly systematic residuals.  This illustrates the advantage of global analysis.  Sometimes, it was 
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difficult to converge to the global best- fit, because the data at high concentration with their relatively 

steep gradients can initially dominate the optimization process and cause the parameters to fall into a 

local minimum.  Therefore, we found it frequently advantageous to adhere to the following sequence:  

First, a local fit was performed to each data set, and the local concentration parameters were fixed.  

Then, the low concentration data were modeled, using estimates for s1, s2, and KA (derived from local 

analyses or sw isotherms), and the monomer s-value was fixed.  Next, a sequence of global fits was 

performed with floating s2 and KA, floating s1, s2, and KA, and finally with floating local concentrations, 

s1, s2, and KA.   

For comparison of the global fits to different combinations of experimental concentrations, Tables 

1 and 2 list the error estimates derived from Monte-Carlo analysis, with and without treating the 

monomer molar mass as an unknown, respectively.  Several tendencies are apparent:  For the 

sedimentation coefficients, obviously conditions must be established to populate the dimer in order to 

determine s2.  Generally, data at higher concentration have more information, which is a consequence 

of these experiments spanning a broader concentration range.  Global analysis of data at different 

concentrations is crucial for high precision in the association constant and the monomer s-value.  

However, including more intermediate concentrations does not result in a very significant gain, which 

is again a consequence of each experiment already spanning a large concentration range due to the 

dilution in the sedimentation boundary (i.e., due to the boundary shape information).  Lower rotor 

speeds are in some cases slightly better for determining the binding constant, but significantly worse 

for the measurement of the sedimentation coefficients.  The combination of data from different rotor 

speeds can be beneficial, but the gains are not very substantial.  For the most parsimonious 

experimental design, it appears that a very high and a very low concentration at a high rotor speed are 

best (Table 1).  Under these conditions, the monomer molar mass can be estimated from the 

sedimentation data, without significant loss of precision in the other parameters (Table 2).   
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Obviously, much better precision is obtained if prior knowledge is available (Table 1).  For 

example, independent information on the sedimentation coefficients may be obtained sometimes 

through site-directed mutagenesis, binding of small ligands that stabilize or destabilize the oligomeric 

states, or by applying different solvent conditions that affect the thermodynamics or the kinetics of the 

self-association equilibrium (24, 29, 30, 33, 84, 85).  Further information may be derived from 

hydrodynamic modeling of the monomer and oligomer, either through simple geometric models or 

utilizing a crystal structure (86, 87).  Remarkably, the most precise determination of the binding 

constant was obtained in single experiments at moderate and high concentrations when the monomer 

and dimer s-value were known (Table 1).  Vice versa, significantly higher precision in the 

sedimentation coefficients is possible if the equilibrium constant is known.  Prior knowledge on the 

association constants may be available from sedimentation equilibrium experiments (such as shown in 

Figure 7 for our model system).  In this case, however, from a statistical perspective, the global 

analysis of sedimentation velocity and sedimentation equilibrium is much more straightforward 

approach.  The SEDPHAT software is designed to incorporate both thermodynamic and hydrodynamic 

data into a global model.  As compared to the separate model, such a global approach can improve the 

precision of both the equilibrium constant and the sedimentation coefficients (Table 1 and 2).  

Combination of velocity and equilibrium data is particularly useful when the molar mass is unknown 

(Table 2).   

Interestingly, the detection of fractions of material incompetent to participate in the reversible 

equilibrium, such as incompetent monomer, or irreversibly aggregated dimer, can be very 

straightforward by global modeling of the sedimentation boundaries (Table 1).  As illustrated in Figure 

8, incompetent monomer results in a clearly formed additional sedimentation boundary in the high 

concentration data, while incompetent dimer would form a clearly visible additional fast sedimentation 

boundary in the low concentration data (data not shown).  Therefore, the detection of the incompetent 
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fractions does interfere with the analysis of the associating system.  Although detection of incompetent 

populations is also possible by sedimentation equilibrium analysis (88), the separation of species in 

sedimentation velocity combined with direct modeling of the boundaries provides a unique tool to 

detect and consider incompetent species.  In principle, other contaminating species can be taken into 

consideration similarly, by modeling as a superposition with an additional, non- interacting component.  

It has been long known that the shape of the sedimentation boundaries has information on the 

nature of the association scheme (21, 89, 90).  To illustrate this property, Figure 9 shows a comparison 

of sedimentation profiles for stable dimer, monomer-dimer, monomer-trimer, monomer-tetramer, and 

monomer-dimer-tetramer self-association (Figure 9).  In all cases, the concentration was assumed to be 

five-fold above the characteristic equilibrium dissociation constants.  It is apparent that with increasing 

association order (1-2, 1-3, to 1-4) the boundary assumes an increasingly bimodal shape, with a steeper 

leading and a longer trailing component.  This boundary shape can also be qualitatively diagnosed a 

transformation of a data subset, such as g(s*) or ls-g*(s).  For quantitative analysis in the context of 

direct modeling of the sedimentation profiles, we have studied how well the association schemes can 

be distinguished given unknown sedimentation coefficients, binding constants, and noisy experimental 

data.  For example, the monomer-dimer data shown in Figure 9B (at 10 µM, with 0.01 OD random 

noise added) can be modeled by the monomer-trimer scheme (such as Figure 9C) with a best- fit 

reduced χ2 of ~ 14 % above the expected value (or ~ 7 % if the monomer molar mass was allowed to 

float to 68 kDa).  This may not be enough, in practice, to unambiguously identify the scheme.  In a 

global analysis of data at 0.2, 2 and 20 µM, the best- fit results in an increase of the reduced χ2 of ~ 43 

% (log10(KA13) = 11.0 and s1 = 5.5 S, and s3 = 7.9 S) but only 12 % if the monomer mass in treated as 

an unknown (converging to 71 kDa, with log10(KA13) = 11.2 and s1 = 5.5 S, and s3 = 7.8 S).  Slightly 

larger deviations are found if data at different rotor speeds are incorporated in the global fit.  Thus, 

global modeling of the sedimentation profiles can be very helpful for the determination of the 
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association scheme, in particular if the molar mass of the monomer is known.  Beyond the χ2 of the fit, 

the returned parameter values for the sedimentation coefficients are closer together in the impostor 

model, suggesting an implausible hydrodynamic shape of the trimer compared to the monomer.   

Hydrodynamic non- ideality can also be taken into account in the global model.  Finite element 

solutions of the Lamm equation with both self-association and hydrodynamic repulsive non- ideality 

can be obtained in the formalism of locally concentration dependent sedimentation coefficients (38, 41, 

77).  The negative concentration-dependence of the sedimentation coefficient at higher concentrations 

results in a characteristic steepening and reduction of the diffusional spread of the sedimentation 

boundaries (91), which is distinct from the boundary shapes caused by of self-association.  This 

provides sufficient information to determine the non- ideality coefficient ks with good precision as an 

additional parameter in the global model (data not shown).   

 

Discussion 

In the present paper, we have proposed several new tools for analyzing protein self-association by 

sedimentation velocity.  There are two general approaches:  the traditional calculation of weight-

average sedimentation coefficients as a function of chemical composition followed by a separate 

isotherm analysis, and the direct modeling of the sedimentation profile from multiple experiments in a 

global analysis.  Both can be combined with other available prior knowledge, including binding 

constants or s-values of the interacting species, derived from ultracentrifugation experiments with 

protein variants, or under modified conditions, or from hydrodynamic consideration of simple 

geometric association models and/or a crystal structure (86, 87).  However, the approaches for 

sedimentation analysis differ in their practical requirements for sample purity and experimental 

conditions.  The former approach is valid for any association model, including hetero-associations, but 

the latter requires a specific association model.   
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 First, based on the theoretical foundation of the second moment definition of a weight-average 

sedimentation coefficient sw, we have shown that integration of any of the currently used differential 

sedimentation coefficient distributions g(s*), ls-g*(s), and c(s) can lead to a well-defined isotherm 

sw(c), which can be used to characterize the thermodynamics of the protein interaction.  While the 

g(s*) distribution has long been used for this purpose, the present analysis showed for the first time 

that also the newer approaches, in particular c(s), which use regularization and diffusional 

deconvolution techniques, are fully consistent with the rigorous definition of sw.  Their utility and 

advantages in comparison with other approaches will be discussed below. 

 An important condition is for calculating well-defined sw-values is that the sedimentation 

boundaries are faithfully described by the distribution.  Although this condition may seem trivial, it 

raises several interesting points.  With regard to the g(s*) distribution, since it is based on a data 

transformation (64), the quality of its representation of the original sedimentation profiles cannot be 

easily assessed.  It is well-known that the numerical approximation of dc/dt (64), which is a central 

computational step in this approach for eliminating time-invariant (TI) noise components of the raw 

data (see below), can produce distortions and artificial broadening in the g(s*) distribution (65).  In a 

rectangular cell approximation, this effect has been described as convolution of g(s*) with a hyperbola 

segment (66).  Semi-empirical rules have been published (65) for the selection of a suitable data subset 

that avoids artificial broadening of the g(s*) distribution.  However, because the g(s*) distribution is 

based on a data transformation, the question how artificial broadening relates to the original data has 

not been asked.  In the present paper, we have introduced a back-transformation of g(s*) into the 

original data space.  Since g(s*) is computed for a discrete set of s-values, one can reconstruct the 

corresponding sedimentation boundaries as a superposition of a large number of step-functions (66).  

The degrees of freedom that were eliminated in the forward-transform by the differentiation dc/dt can 

be restored by algebraically calculating the best- fit TI noise components (52), which are 
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unambiguously determined for any model of the sedimentation profiles (68).  (This step makes the 

additional assumption that the TI noise is truly constant, but after extensive application of systematic 

noise decomposition, little evidence for such instability is usually found.)  As a result, the back-

transform can be used to verify quantitatively how well the original sedimentation data are represented 

by the g(s*) distribution.  In this way the g(s*) approach can be changed from a ‘data transform’ into a 

model for the sedimentation profiles that produces residuals of the fit, which can be compared with 

other sedimentation models, thereby closing a gap in the relationship between the different approaches 

for interpreting sedimentation velocity data.  As shown in Figure 3, a g(s*) analysis using a high 

number of scans that led to artificial distortion of g(s*) modeled the data very poorly, while the data 

were well-described when not exceeding recommended number of scans.  This shows that the rms 

error of the back-transform could be used as a criterion for the selection of the appropriate data subset.  

Interestingly, when applied to the analysis of experimental interference optical sedimentation profiles, 

we observed that the back-transform of g(s*) calculated by DCDT+ under recommended conditions 

produced estimates of the TI noise that were virtually identical to those from other direct sedimentation 

models (data not shown).  In the present context, the faithful representation of the original 

sedimentation boundaries is critical for determining thermodynamically well-defined weight-average 

sedimentation coefficients.   

The sedimentation coefficient distributions ls-g*(s) and c(s) are already direct models of the 

sedimentation profiles, utilizing the recently introduced method for including the time- invariant and 

radial- invariant noise components of the sedimentation data into the model (52).  The question of 

representation of the sedimentation profiles is therefore more straightforward.  For the apparent 

sedimentation coefficient distribution ls-g*(s), the limiting factor is that diffusion is not taken into 

account.  For example with the data shown in Figure 3, the ls-g*(s) distribution can provide a 

reasonably good sedimentation model (rms error 0.016) over the complete range shown, but the quality 
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of fit will decrease if more scans are included (data not shown).  Because boundary broadening by 

diffusion is taken into account in the c(s) method, there is no limit apparent, and the complete set of 

experimental scans can be modeled well and included in the analysis.  Clearly, a larger number of 

scans translates into more precise estimates for sw.   

Both the ls-g*(s) and the c(s) methods utilize regularization, which apply Bayesian principles to 

favor distributions that are more consistent with our prior expectation of smoothness or high 

informational entropy.  This can have a significant influence on the shape of the calculated 

distribution, and it is an important question how this will influence the calculated weight-average 

sedimentation coefficients.  To estimate this influence, the sole criterion is, again, the quality of the 

sedimentation model.  Since the parsimony prior of the regularization is scaled such that it does not 

decrease the quality of fit by more than a predefined confidence level (usually one standard deviation), 

the errors translated in the weight-average sedimentation coefficients cannot exceed the statistical 

limits.  Accordingly, from the analysis of our model data, we found the bias from the regularization to 

affect the sw-values only within a magnitude equal or smaller than the statistical errors from the noise 

in the sedimentation data.  As a consequence, regularization is of concern and should be switched off 

only when determining sw-values from data with extremely low signal-to-noise ratio (e.g., smaller than 

five).     

Because the analysis of the sw-isotherm can be very ill-conditioned (Figure 6), the ability to cover 

a large concentration range and the precision of the sw-values is very important.  In the present paper, 

we have implemented Monte-Carlo simulations in order to calculate error estimates for the sw-values 

from integration of c(s).  As shown in Figure 6, the errors are significantly smaller than those estimated 

for the g(s*) method, largely probably due to the several times larger data sets that can be included in 

c(s).  Noise amplification in the g(s*) method in the pairwise subtraction of scans may also be a factor.  

With c(s)  loading concentrations that produce signals as small as two or three times the noise can be 
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easily analyzed.  This is of significance in particular for the data at lower concentrations, where the 

signal-to-noise ratio is relatively low, but where the isotherm would contain very significant 

information on the s-value of the smallest species (Figure 6).   

Another interesting feature when using the c(s) distribution for determining sw-values is the 

deconvolution of diffusional broadening.  As has been pointed out before (67, 68), the deconvolution is 

based on the assumption of non- interacting species, and for interactions that are reversible on the time-

scale of the sedimentation experiment, the peaks in the c(s) distribution do not correspond to the s-

values of sedimenting species.  This is illustrated in Figure 2, which also suggests that even for 

concentrations 10fold lower and higher than KD one can only very cautiously interpret the c(s) curves, 

for example, to extrapolate starting values for the monomer and oligomer s-values for the isotherm 

analysis.  (This is in contrast to slowly re-equilibrating systems, where the peaks of the c(s) curves do 

reflect the oligomeric species present (54, 73).)  In any case, the diffusional deconvolution can be 

utilized for the detection of species and contaminants that do not participate in the association, 

provided they sediment at rates outside the range of s-values of the associating protein and its 

complexes.  This is shown in Figure 4, where the superposition of c(s) distributions at different 

concentrations reveals a constant and separate 3 S species, which can be excluded from the integration 

range of sw.   

A general concern when using the c(s) distribution is that it is based on an approximation for the 

frictional ratios f/f0 of non- interacting sedimenting components, and the assumption that these can be 

sufficiently well approximated by a weight-average (f/f0)w.  In contrast, no such approximation appears 

necessary in the analysis with the g(s*) or ls-g*(s) method.  However, both g(s*) and ls-g*(s) are 

apparent sedimentation coefficient distributions of hypothetical non-diffusing (and non- interacting) 

particles, which is equivalent to the limit of infinite frictional ratios for all species (68).  Although the 

estimate of a weight-average (f/f0)w in the c(s) method may not be precise for all species, f/f0 is not a 
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very shape-sensitive parameter and it has been shown that the peak positions of c(s) are largely 

insensitive to the value of (f/f0)w (68).  Allowing for diffusion of the species with finite f/f0 values is 

more realistic and provides a better model of the sedimentation profiles, and permits extending the data 

set to be modeled from a small data subset in g(s*) and ls-g*(s) to the complete sedimentation process, 

thereby both increasing the resolution of the distribution and the precision of the sw values.  As shown 

in the theory section, the only requirement for a precise sw value is a good model of the sedimentation 

profiles, which can usually be assured by the optimization of (f/f0)w through non-linear regression of 

the experimental data.  To this extent, the assumption of (f/f0)w is not critical for the determination of 

sw.  On the other hand, if a good fit cannot be achieved, for example when analyzing strongly 

concentration-dependent non- ideal sedimentation with repulsive interactions, the restriction of the data 

subset and/or the use of the apparent sedimentation coefficient distributions g(s*) and ls-g*(s) which 

represent only the overall boundary shape appears advantageous.   

A second important element for generating isotherm data sw(c), after determining precise sw-values 

with any method, is the assignment of the correct concentration values.  It is well-known that the 

sedimentation process slows down due to significant radial dilution (1), and that for reversibly 

interacting systems, the loading concentration is not the correct concentration.  The theoretical analysis 

shows that, perhaps contrary to common expectation, the plateau concentration is not correct either, if 

the distribution is derived from any of the established differential sedimentation coefficient 

distributions.  The reason is that the sedimentation coefficient distributions are based on equations that 

integrate the entire sedimentation process, from the start of the centrifuge to the measurement of the 

boundary position.  Therefore, the time-average of the radial dilution that the boundary has 

experienced during the whole process has to be taken into consideration.  The proposed correction 

factors amount to as much as 10 % in concentration, or ~ 1 % in the s-values.  This may seem a small 

factor, but it is significantly larger than the experimental error in s, and can be relevant considering the 
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difficulties of the subsequent analysis of the isotherm (Figure 5 and 6).   

 We have also implemented a differential second moment method (Eq. 3) which does not imply 

any prior history.  In this form, the relevant concentrations are the plateau concentrations (averaged 

only between the scans used in the analysis).  This approach has the practical advantage that it can be 

applied to data from experiments with initial convection or temperature instability, or where the 

meniscus cannot be located, as long as the sedimentation profiles considered for analysis reflect free 

sedimentation.  It shares these properties with the technique of using an experimental scan to initialize 

a Lamm equation model (40), but the derived sw values from the differential second moment method 

are more general and applicable to any reactive or non-reactive multi-component system. 

 In summary, the above methods allow the determination of precise weight-average sedimentation 

coefficients and effective concentrations to form the isotherm sw(c).  In our experience, the diffusion 

deconvoluted sedimentation coefficient distribution c(s) usually gave the best results.  The sw(c) can 

then be subjected to a separate thermodynamic analysis with a model for the interaction, with binding 

constants and usually with monomer and oligomer sedimentation coefficients as unknowns.   

A second major family of methods is the direct modeling of the sedimentation profiles with 

numerical solutions of the Lamm equation for fast reversible self-association.  Global modeling of 

different sedimentation velocity experiments is not new; it has been applied, for example, to the study 

of non- ideal sedimentation in complex solvents (77), or for the characterization of multiple 

independent species of a viral protein (73), and it is also related to the global modeling of time-

difference data for heterogeneous interactions (49).  However, while increasing computational power 

makes it possible to readily apply this tool, so far no analysis of the properties and optimal 

experimental conditions for the application of global direct sedimentation modeling has been 

published.  In the present paper, we have introduced a new software platform, SEDPHAT, for the 

global analysis of hydrodynamic and thermodynamic data from sedimentation velocity, sedimentation 
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equilibrium, and dynamic light scattering experiments.  Although not discussed here, it permits very 

flexible characterization of non- interacting species.  The main goal in the present context was to 

provide a comprehensive analysis of the potential for analyzing protein self-association.   

 A central aspect of this approach is that the sedimentation profiles contain information on the 

complete isotherm up to the loading concentration.  In addition, as many data points can be included as 

in the c(s) analysis discussed above.  For example, in our simulated model data that mimics the signal-

to-noise ratio typically achieved with the absorption optics, a single experiment at approximately 5fold 

KD gives surprisingly good precision in the derived parameters.  Significant improvement can be 

achieved already with the combination of an experiment at very low and very high loading 

concentrations (Table 1).  Clearly, much fewer concentrations are required to determine the binding 

constant and the s-values of the monomer and oligomers than with the analysis of an sw- isotherm.  

Also, the monomer molar mass can be readily determined in this approach.  It should be noted that the 

presented global Lamm equation model requires that the reaction kinetics is fast compared to the 

sedimentation.  This may be known from other techniques, or may be studied from the concentration 

and rotor speed dependence of the peak positions of c(s).     

Global direct modeling of the sedimentation profiles has several other remarkable properties.  It 

has been long known that the boundary shape is specific for the different association schemes.  For 

example, Gilbert has predicted by theoretical considerations in the absence of diffusion that the 

sedimentation boundaries exhibit increasing asymmetry and higher steepness of the leading edge for 

higher order associations (21, 89).  This clearly distinguishes rapid from slow self-association 

equilibria ((54) and Figure 9).  Similar boundary distortions with stronger boundary deceleration 

appear in analytical zone centrifugation (92, 93) (data not shown).  So far, the reverse problem has not 

been examined, if the association scheme can be uniquely identified with direct modeling the 

sedimentation profiles given noisy experimental data.  When examining the quality of the fit of our 



 35

simulated monomer-dimer system with an imposter monomer-trimer model, we found that a single 

sedimentation experiment may not contain enough data to unambiguously distinguish the two.  With 

global modeling of several experiments at different concentrations, however, the association scheme 

was much better determined.  A practical application of this is the multi-step self-association of gp57A 

of the bacteriophage T4, which was analyzed by sedimentation velocity and other biophysical methods 

(59).  In these studies, global modeling of the sedimentation boundaries provided the most convincing 

evidence for the determination of the association scheme.   

 Another advantage is the ability to identify incompetent species.  Because monomers or oligomers 

that do not participate in the association separate as independent species and can form a separate 

boundary, their consideration does not significantly influence the characterization of the association.  

This may be highly useful, for example, where stable covalently linked oligomers can occur in addition 

to the reversible ones (94), or where some of the protein may be partially unfolded and incompetent to 

associate (88, 95).  It is possible to identify the contamination with incompetent species also by 

sedimentation equilibrium (88) (for example in an apparent concentration dependence of the estimate 

of the association constant).  However, because the competent and incompetent species of the same 

oligomer do contribute to the sedimentation equilibrium signal in the same way, they can be 

distinguished only after analysis of a large experimental data basis.  In comparison, their 

hydrodynamic separation in sedimentation velocity can be even qualitatively apparent in a single 

experiment.  

 Finally, an important feature of the global direct modeling of the sedimentation profiles is that it 

can be extended to a global analysis of sedimentation equilibrium and velocity data.  This can be 

useful, in particular, to combine partial information from either approach.   An open problem when 

combining data sets from different techniques is their relative weight.  One could argue that a purely 

statistical weighting according to statistical noise of the data points is not optimal, since it does not 
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take into account the different robustness of the experiments against imperfections leading to 

systematic errors.  A limitation of the global analysis of experiments at different rotor speeds is a 

possible pressure effect, which in some cases may lead to inconsistent binding constants for the 

different experiments.  Partial-volume changes of proteins upon oligomerization have been observed 

occasionally at pressures accessible to the analytical ultracentrifuge (96, 97), but are usually visible at 

higher pressures (2).   

 In summary, we have further explored known approaches and developed several new tools for two 

different general strategies for the analysis of protein self-association by sedimentation velocity. The 

route via the concentration dependence of the weight-average sedimentation coefficients followed by 

isotherm analysis has the advantage that any impurities or aggregates that are not part of the interacting 

system can be excluded from the analysis, if they can be hydrodynamically separated.  The diffusion 

deconvoluted sedimentation coefficient distribution c(s) is particularly well suited for this approach, as 

it allows the widest concentration range and has the highest precision among the sedimentation 

coefficient distributions.  Conversely, the strategy of global modeling of the sedimentation profiles 

allows utilizing the largest data sets, requires fewer experiments, and permits the identification of the 

association scheme, because the information from the shape of the sedimentation profiles is fully 

exploited.  However, consideration of all sedimenting species is necessary, which makes this method 

currently only practical with highly pure samples.  In the future, it may be possible to partially 

eliminate this drawback by a hybrid approach, combining a sedimentation model for a specific solution 

component with a continuous sedimentation coefficient distribution describing species sedimenting at 

different rates.   
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Table 1 
data set at concentration 
(µM) 

rotor speed  
(1000 rpm) 

σ(log KA) 
× 100 

σ(s1)  
(0.01 S) 

σ(s2)  
(0.01 S) 

0.2  50 3.8 (0.40*) 1.5  (0.95&) 15 (5.9&) 

2  50 2.0 (0.24*) 3.4 (1.6&) 2.3 (1.5&) 

10  50 0.74 2.5 0.28 

20  50 1.1 (0.11*) 4.0 (1.2&) 0.23 (0.26&) 

0.2 and 20 50 0.39 0.48 0.24 

0.2 and 20 with 10% 
incompetent monomer  

50 0.48 0.33 0.28 

0.2, 2, and 20  50 0.37 0.53 0.19 

0.2, 0.5, 2, 10, and 20 50 0.24 0.35 0.15 

0.2 20 2.7 9.5 72 

2  20 1.8 4.3 2.6 

20 20 0.6 3.1 0.41 

0.2 and 20 20 3.2 3.9 1.2 

0.2  20 and 50 3.8 1.5 14 

2 20 and 50 1.4 2.8 1.8 

20 20 and 50 0.52 2.0 0.23 

0.2 and 20 20 and 50 0.28 0.41 0.18 

0.2 and 20  10 and 50 0.38 0.48 0.21 

0.2, 2, and 10 equilibrium  10 (eq) 1.2 - - 

2 equilibrium and velocity 10 (eq), 50 (vel) 1.1 2.2 2.0 

0.2, 2, and 10 equilibrium, 
10 velocity 

10 (eq), 50 (vel) 0.64 2.5 0.33 

Table 1:  Estimated errors from Monte-Carlo simulations for global or local fits to sedimentation 
velocity experiments at different concentrations, rotor speeds, and combinations thereof.  
Sedimentation equilibrium data are included where indicated (see Figure 7).  Local concentrations and 
baselines, global monomer and dimer sedimentation coefficients, and the equilibrium constant were 
treated as unknowns.  Values in parenthesis indicate the error of determining the sedimentation 
coefficients from a known binding constant (&), and the error of the binding constant from known 
sedimentation coefficients (*), respectively.  Sedimentation velocity data at 50,000 rpm are based on 
the parameters described in Figure 1.  Velocity data at 10,000 and 20,000 rpm were simulated with 
scan time intervals of 1,500 and 6000 sec, respectively, under otherwise identical conditions.  
Simulations with incompetent monomer were performed as superposition of an interacting and non-
interacting sedimentation model.  Error estimates are derived as the limits of the central 68% of 
parameter values from 500 simulated data sets, each modeled with algebraic optimization of the linear 
parameters and simplex optimization of the non- linear parameters.  
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Table 2 
data set at concentration 
(µM) 

rotor speed  
(1000 rpm) 

σ(Mw) 
(kDa) 

σ(log KA) 
× 100 

σ(s1)  
(0.01 S) 

σ(s2)  
(0.01 S) 

0.2  50 1.5 4.5 17 21 

2 50 2.4 3.2 4.3 8.7 

10 50 0.48 1.2 2.6 0.60 

20  50 0.64 3.1 8.6 0.51 

0.2 and 20 50 0.31 0.63 0.62 0.36 

0.2 and 20 with 10% 
incompetent monomer 

50 0.34 0.53 0.35 0.35 

0.2, 2, and 20 50 0.25 0.41 0.48 0.23 

0.2, 0.5, 2, 10, and 20 50 0.17 0.28 0.37 0.17 

0.2  20 1.7 9.0 2.7 49 

2  20 1.2 4.2 6.3 4.9 

20 20 0.36 2.3 6.7 0.52 

0.2 and 20 20 0.23 0.94 1.0 0.57 

0.2  20 and 50 1.2 7.0 1.2 25 

2  20 and 50 0.73 2.3 3.2 3.1 

20 20 and 50 0.28 1.8 5.0 0.33 

0.2 and 20 20 and 50 0.95 2.0 0.51 0.31 

0.2 and 20  10 and 50 0.19 0.46 0.49 0.26 

0.2, 2, and 10 
equilibrium  

10 (eq) 0.52 3.0 - - 

2 equilibrium and 
velocity 

10 (eq), 50 (vel) 0.52 2.2 3.3 2.8 

0.2, 2, and 10 
equilibrium, 10 velocity 

10 (eq), 50 (vel) 0.23 1.1 2.6 0.37 

 

Table 2:  Estimated errors when the monomer molar mass is treated as an unknown parameter.  Monte-
Carlo simulations for global or local fits to sedimentation velocity experiments at different 
concentrations, rotor speeds, and combinations thereof are performed as described in Table 1.   



 45

 
Legends for the Figures 

Figure 1:  Isotherm of weight-average sedimentation coefficient as a function of concentration, 

evaluated by different methods.  The underlying sedimentation profiles were simulated for protein of 

100 kDa, with sedimentation coefficients of 5 S and 8 S for the monomer and dimer, respectively, and 

a dimerization constant of 5×105 M-1 .  Finite element solutions of the Lamm equation (41) were 

calculated for concentrations of 0.2, 0.5 and 1 µM (total protomer concentration) with an extinction 

coefficient of 7×105 M-1cm-1, at concentrations of 2, 5, and 10 µM with an extinction coefficient of 

1×105 M-1cm-1, and at a concentration of 20 µM with an extinction coefficient of 5×104 M-1cm-1, 

corresponding to the detection of the protein in 12 mm centerpieces with the absorbance optical system 

at wavelengths of 230, 280, and 250 nm, respectively.  Sedimentation was simulated for a 10 mm 

solution column at 20°C and at rotor speeds of 50,000 rpm in time intervals of 300 sec.  To all data, 

0.01 OD normally distributed noise was added.  An example for the sedimentation profiles is shown in 

the inset for 5 µM (every 2nd scan shown).  As a reference, the theoretically expected isotherm sw(c) is 

shown as solid line.  Weight-average s-values from integration of the differential sedimentation 

coefficient distribution are shown for g(s*) (crosses), ls-g*(s) (triangles), and c(s) (circles).  

 

Figure 2:  Sedimentation coefficient distributions c(s) from the analysis of the sedimentation profiles 

the simulated monomer-dimer system.  Concentrations are 0.2 µM (solid line), 0.5 µM (dashed line), 1 

µM (dash-dotted line), 2 µM (dash-dot-dotted line), 5 µM (dotted line), 10 µM (+), and 20 µM 

(circles).  To allow comparison, the c(s) distributions were normalized. 

 

Figure 3:  Simulated sedimentation profiles of the model system at 10 µM (circles, every third data 

point shown), and back-transforms of the g(s*) distributions calculated by dcdt method.  To account 
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for the differentiation in the g(s*) transform, the back-transforms include the degrees of freedom from 

time- invariant noise.  Dashed lines indicate the back-transformed boundaries from g(s*) when using 

too many scans (7 – 14), while the solid line is based on a g(s*) analysis of scans 11 – 14.  

 

Figure 4:  Sedimentation coefficient distributions c(s) from simulated data of the model system in the 

presence of a contamination with a smaller species not participating in the association (Mw = 50,000 

kDa, s = 3 S, 20% of the loading concentration).  Shown are the normalized c(s) distributions at 

concentration of 0.2 µM (solid line), 2 µM (dashed line), and 20 µM (dotted line).  For comparison, the 

g(s*) distributions are calculated at the same concentrations, and for clarity are offset by 0.4.     

 

Figure 5:  Isotherms of the weight-average sedimentation coefficient versus concentration obtained by 

the different methods.  Shown are a section of the isotherm for sw(cload) from the g(s*) method (solid 

squares) and c(s) (solid circles), the isotherm sw(c*) from the c(s) method using the corrected effective 

concentration according to Eq. 8 (open circles), the corresponding values obtained from the integral 

second moment method (Eq. 5) (crosses), and isotherm values from the differential second moment 

method (Eq. 4) plotted against average plateau concentration (open triangles).  For comparison, the 

theoretically expected isotherm is shown as solid line.   

 

Figure 6:  Analysis of the sw(c) data and comparison with different isotherms. The weight-average s-

values as obtained from the analysis of the sedimentation velocity data simulated for the model system 

with s1 =  5 S, s2 =  8 S, and KA = 5×105 M-1 (Figure 1).  Data from the analysis with g(s*) (squares), 

and with the c(s) method using the effective concentrations from Eq. 8 (circles).  Error bars on the 

squares are estimates from DCDT+, and reflect the different signal- to-noise ratio in the sedimentation 

data.  Simulated sedimentation data with low signal- to-noise ratio at concentrations of 0.1, 0.05, and 
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0.025 µM (assuming detection at 230 nm, analogous to conditions in Figure 1) were analyzed only 

with the c(s) method (triangles), and error bars were calculated with Monte-Carlo simulations.   

Isotherms are calculated for the correct parameter values of s1 =  5 S, s2 =  8 S, and KA = 5×105 M-1 

(solid line), and for several sets of incorrect parameters:  s1 =  4 S, s2 =  7.68 S, and KA = 1.94×105 M-1 

(dashed line), s1 =  3 S, s2 =  7.56 S, and KA = 4.56×105 M-1 (dash-dotted line), s1 =  2 S, s2 =  8.27 S, 

and KA = 8.26×105 M-1 (dash-dot-dotted line), and s1 =  5.5 S, s2 =  8.35 S, and KA = 1.68×104 M-1 

(dotted line).   Panel B:  Self-association in the presence of hydrodynamic non- ideal sedimentation.  

Sedimentation for the same monomer-dimer system was simulated, but with 25fold weaker association 

(KA = 20,000/M) and with a non- ideality coefficient ks of 0.009 ml/mg (approximating spherical 

particles).  The sedimentation profiles were simulated mimicking experimental conditions from the 

interference optical data acquisition system.  sw values are determined from integration of the c(s) 

sedimentation coefficient distributions (circles).  (To achieve an acceptable model of the profiles of 

non- ideal sedimentation at high concentrations, the number of fitted scans was reduced;  due to the 

boundary steepening from non- ideality, higher best- fit apparent f/f0 values were observed.)  Also 

shown are the theoretical sw isotherms in the presence (solid line) and absence (dashed line) of 

hydrodynamic non- ideality.  

 

Figure 7:  Simulated sedimentation equilibrium data of the monomer-dimer self-association model 

system (Figure 1).  Sedimentation profiles were calculated at a rotor speed of 10,000 rpm, at 

concentrations of 0.2 µM (with an extinction coefficient of 7×105 M-1cm-1, crosses), 2 µM (with an 

extinction coefficient of 1×105 M-1cm-1, triangles), and 10 µM (with an extinction coefficient of 1×105 

M-1cm-1, circles).  Normally distributed no ise of 0.005 OD was added.  For the global analysis, data 

points were given a 25fold higher weight in order to compensate for the fewer number of data points 

per experiment.  



 48

 

Figure 8:  Sedimentation boundaries of the monomer-dimer self-association model system at 50,000 

rpm in the presence (top panel) and absence (lower panel) of incompetent monomer at a concentration 

of 10% total loading concentration. 

 

Figure 9:  Shapes of the sedimentation boundary for different self-association schemes.  Panel A: a 

stable dimer with 8 S; Panel B: a monomer-dimer equilibrium with s1  = 5 S, s2 = 8 S, log10(KA12) = 

5.699 (half-dissociation at 2 µM); Panel C: a monomer-trimer equilibrium with s1  = 5 S, s3 = 10 S, 

log10(KA13) = 11.398 (half-dissociation at 2 µM); Panel D: a monomer-tetramer equilibrium with s1  = 5 

S, s4 = 12 S, log10(KA14) = 17.097 (half-dissociation at 2 µM); Panel E: a monomer-dimer-tetramer 

equilibrium with s1  = 5 S, s2 = 8 S, s4 = 12 S, log10(KA12) = 5.699, log10(KA14) = 17.097 (half-

dissociation for both steps at 2 µM).  Simulation parameters are analogous to those in the model 

system of Figure 1, at concentration 10 µM, and at constant time intervals of 300 sec.   
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