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Abstract 

Macromolecular sedimentation in inhomogeneous media is of great practical importance.  

Dynamic density gradients have a long tradition in analytical ultracentrifugation, and are 

frequently used in preparative ultracentrifugation.  In this paper, a new theoretical model for 

sedimentation in inhomogeneous media is presented, based on finite element solutions of the 

Lamm equation with spatial and temporal variation of the local density and viscosity.  It is applied 

to macromolecular sedimentation in the presence of a dynamic density gradient formed by the 

sedimentation of a co-solute at high concentration.  It is implemented in the software SEDFIT for 

the analysis of experimental macromolecular concentration distributions.  The model agrees well 

with the measured sedimentation profiles of a protein in a dynamic cesium chloride gradient, and 

may provide a measure for the effects of hydration or preferential solvation parameters.  General 

features of protein sedimentation in dynamic density gradients are described.  
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Introduction 

The sedimentation of macromolecules through inhomogeneous media is a process frequently 

encountered in the practice of centrifugation.  Density gradient techniques in preparative 

ultracentrifuges have a great importance as general biochemical tools.  In analytical 

ultracentrifugation, density gradient sedimentation has a long history for the study of nucleic acids 

[1-3], the molar mass and buoyant density of proteins [4], and it is still applied in a variety of 

studies with topics ranging from the composition of genomes [5-7] to the characterization of 

protein-detergent and protein- lipid complexes [8, 9].  Smaller self- forming density gradients 

generated by the centrifugal field are the basis of analytical zone centrifugation [10, 11], and 

gradients in solvent density and viscosity may also be generated inadvertently at high centrifugal 

fields when using high concentrations of a sedimenting co-solute, such as sucrose.  In the field of 

synthetic polymer chemistry, isopycnic density gradient ultracentrifugation is an important assay 

for the characterization of macromolecules and particles, for example in industrial processes [12].   

The theoretical prediction and the analysis of macromolecular transport in density 

gradients is significantly more complex than the standard sedimentation in homogeneous solvents 

for thermodynamic and computational reasons.  A variety of models were proposed in earlier 

studies.  Several authors addressed the migration of a sedimenting band in a hypothetical pre-

existing density and/or viscosity gradient [13-16].  As part of their pioneering theoretical work on 

the characterization and analysis of macromolecular sedimentation profiles in the ultracentrifuge, 

Dishon, Weiss and Yphantis have first considered the evolution of the solvent density distribution 

with time [17].  They used an empirical formula for the relaxation kinetics of the distribution of a 

co-solute acting as densifier, and solved the macromolecular redistribution in the dynamic gradient 

with the flow equation for macromolecular sedimentation and diffusion in the centrifugal field, the 
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Lamm equation [18].  In this work, the simplifying assumption of a rectangular geometry was 

made [17].  Sartory et al. have used a finite-difference solution of the Lamm equation to describe 

the sedimentation of the small co-solute, and developed approximate analytical expressions for the 

sedimentation and diffusion of a thin band of macromolecules in the dynamic density gradient, 

using an equilibrium pertubation technique [19].  Minton has developed a detailed finite-

difference method for predicting the non- ideal sedimentation of CsCl, and described a finite-

difference algorithm for the simulation of a macromolecular species in the density gradient [20].   

In the last decade, the analysis of transport processes in analytical ultracentrifugation 

underwent significant development.  The application of improved mathematical and computational 

tools now permits the efficient and precise solution of the Lamm equation, which can be used to 

characterize macromolecular sedimentation coefficients, molar masses, size-distributions and 

molecular interactions [21-32].  However, this development was constrained to the sedimentation 

in homogeneous solvents.   

 In the present paper, a general model is proposed for macromolecular sedimentation in 

inhomogeneous media.  It is based on finite-element solutions of the Lamm equation with a 

dynamic description of the local density and viscosity, derived from the non- ideal sedimentation 

of a co-solute.  It can also be applied to the sedimentation in compressible solvents, which is 

described in the second paper of this series [33].  The model is implemented in the software 

SEDFIT and can be used for the prediction of macromolecular sedimentation, as well as for 

analysis of experimentally measured macromolecular concentration profiles from the analytical 

ultracentrifuge.  The model is tested with experimental data from the sedimentation of a protein in 

CsCl solution, and several features of macromolecular sedimentation in inhomogeneous media are 

described.   
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Theory 

Finite element solution of the Lamm equation in inhomogeneous solvents 

The Lamm equation describes the sedimentation and diffusion of a macrosolute in the sector-

shaped volume of the analytical ultracentrifuge: 

2 21c c
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     (1) 

with c (r,t) denoting the concentration at a distance r from the center of rotation and at time t, ω 

the angular velocity, D the diffusion coefficient, and s the sedimentation coefficient.  Although it 

is strictly not valid for three-component systems [34], it may be used as a first approximation for 

macromolecular sedimentation for cases where interactions between the macrosolute and co-solute 

can be neglected or approximated as a constant apparent change in the partial-specific volume of 

the macrosolute.  In this approximation, gradients in density and viscosity due to the redistribution 

of co-solute will be treated as a background on which macromolecular sedimentation and diffusion 

according to Eq. 1 takes place.  Limitations of this approximation will be discussed below.  

If we consider the effect of locally varying solvent viscosity η and density ρ on the 

macromolecular sedimentation, it is useful to relate the local macromolecular transport parameters 

to those under standard conditions:  
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with the partial-specific volume of the macromolecule v , with the standard conditions denoted 

with the index 20,w (for water at 20 °C), with the apparent partial-specific volume φ’ (which 

includes hydration and preferential solvation), and with the abbreviation α denoting the inverse of 
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the relative viscosity, and with β denoting the relative buoyancy.  It should be noted that if the 

density of the macromolecule 1/ v  is close to the solvent density, changes in the relative buoyancy 

can be very large even at small changes in density.  The thermodynamically correct form of the 

buoyancy factor is the density increment (dρ/dc)µ [35].  It is expressed here in an equivalent form 

of a buoyancy factor with an apparent partial-specific volume (1 ' ( , ))r tφ ρ− , from which 

preferential interaction coefficients with of water and co-solute  may be calculated [36] (see 

discussion).   

 Although the Lamm equation (Eq. 1) does not have an analytical solution, it can be solved 

very efficiently by finite element techniques [24, 25, 37].  Following the method outlined in [24], 

we can approximate the concentration dis tribution c(r,t) as a superposition of elements Pk  
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As introduced first by Claverie [37], the elements Pk can be constant and equidistant triangular hat 

functions (rk+1 = rk + ∆r).  A more efficient and numerically more stable choice of elements, in 

particular for small D, is a moving frame of reference, in which the radial grid points r are 
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logarithmically spaced and time-dependent [24].  If the rk(t) evolve exponentially according to 

rk(r) = rk,0exp(sGω2(t-t0)) (with sG denoting a sedimentation coefficient), they mimic the 

sedimentation of a non-diffusing particle and can provide a frame of reference that is translated 

and stretched so that the sedimentation term in Eq. 1 disappears and Eq. 1 reduces to the 

description of diffusion alone.  Details on efficient spatial and temporal discretization schemes can 

be found in [24].  The following discussion will proceed in a general way with non-equidistant and 

time-dependent elements Pk, in which the equations for a Claverie grid are contained as a special 

case with 0kP t∂ ∂ = .   

Analogous to the macromolecular concentration, we can also use the elements Pk to 

express the local viscosity term α and the relative buoyancy β  as  
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Multiplication of both sides of Eq. 1 with an element Pk and volume integration from meniscus to 

bottom (using integration by parts and taking advantage of the vanishing total flux at meniscus and 

bottom) leads to  
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Inserting Eqs. 3 and 5 leads to the set of linear equations 
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which can be written in matrix form 
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In Eq. 8, the matrices Bkj and sGA(3)
kj are as described in [24], and analytical expressions for the 

new matrices ∑ α=
l lt (1*)

kjl,
*)1( )( AA  and ∑ βα=

nl nlt
,

(2*)
kjln,

*)2( )( AA  are given in the Appendix.  In 

comparison with the case of homogeneous solvent, the matrices A(1*)(t) and A(2*)(t) appear in place 

of the usual propagation matrices A(1) and A(2) [24].  In fact, it can be shown that the sum over the 

tensor elements equals those previous propagation matrices, i.e., (1)
kj

(1*)
kjl, AA =∑l

 and 

)2(
kj,

*)2(
kj,l AA =∑ nl n .  This can be expected because the constant homogeneous solvent conditions 

should emerge as a special case from Eq. 8 when constant buoyancy and relative viscosity 

coefficients are used.  Eq. 8 can be solved with methods similar to those described earlier for the 

case of a moving frame of reference [24] and for the Claverie scheme [25].  For time-dependent 

density and viscosity gradients, the propagation matrices have to be updated after each time-

increment.  The finite element solution was incorporated in the software SEDFIT, which can be 

downloaded from www.analyticalultracentrifugation.com.   

 

Dynamic density gradients formed by sedimenting co-solutes 

Gradients in density and viscosity can be established during the centrifugation experiment by 

sedimentation of a co-solute in high concentration.  The mutual diffusion coefficient of such a 

component is given by  
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1
kTv d

D w
f dw

γ = + 
 

      (9) 

where k is the Boltzmann constant, T is the absolute temperature, ν is the dissociation number, f 

the frictional coefficient, γ the thermodynamic activity coefficient, and w the weight concentration 
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of the co-solute [38].  Following the approximation that the frictional coefficient for sedimentation 

and diffusion is approximately identical for the solutes under consideration, such as CsCl, the 

sedimentation coefficient can be written as  

   ( )
0(1 )

1 ln
M v D
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vRT wd dw

− ρ
=

+ γ
      (10) 

(with M denoting the molar mass of the species and ρ0 the solvent density)[20].  Minton has given 

polynomial approximations for the sedimentation and mutual diffusion coefficient of CsCl 

solutions, and applied them to the simulation of self- forming CsCl density gradients using a finite 

difference solution of the Lamm equation [20].  A similar approach is implemented in SEDFIT, 

using the polynomial approximations for the concentration dependence of D(c) and s(c) combined 

with a finite element solution of the Lamm equation [25, 39].  For the simulation of sedimentation 

of a dilute macromolecular component in the self- forming density gradient, the evolution of the 

co-solute is coupled to the solution of the Lamm equation for the macromolecular components, 

and from the local concentration of the co-solute the local density and viscosity experienced by the 

macromolecular component is calculated.   

As an alternative approach, SEDFIT allows one to empirically model experimental data 

from the redistribution of a co-solute, assign a molar loading concentration of this species, and use 

its redistribution as a basis for calculating ρ(r,t) and η(r,t).  This approach is simpler, as it does not 

require the measurement of the full concentration dependence D(c) and s(c).  Apparent D and s-

values at the loading concentration may be modeled, for example, to interference optical data of 

the co-solute alone with water as an optical reference, run separately in the same rotor.  Although 

this approach may appear less rigorous, it is sufficient to calculate the local density and viscosity 

effects if the co-solute redistribution can be described well. 
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Results  

Because the Lamm equation is notoriously difficult to solve and no analytical solution exists, it is 

crucial to verify the precision and the limitations of the algorithm.  The present method was tested 

according several different criteria.  First, the sedimentation of a 200 kDa protein in a linear 

density and viscosity gradient was simulated, sufficient to generate a band with neutral buoyancy 

at ~ 7.1 cm.  Both the static and the moving frame of reference algorithms independently 

converged to the same solution.  While static frame of reference algorithm converged rapidly with 

finer spatial grid (maximal relative error δmax < 10-5 at grid size n > 500), the moving frame of 

reference required a significantly finer spatial grid to converge to the same solution (δmax < 3×10-4 

at n = 20000, δmax  = 5×10-3 at n = 1000).  This indicates that the moving frame of reference does 

not lend itself to sedimentation under conditions that include regions of neutral buoyancy.  

However, this effect was significantly reduced in shallower density gradients that do not lead to 

band formation.  Under these conditions, the moving frame of reference was advantageous when 

solving the Lamm equation for large macromolecules that sediment rapidly.  As a second test of 

the algorithm, it was verified that mass conservation is fulfilled, and that it solved the Lamm 

equation correctly for the special cases of constant viscosity and density, which is identical to the 

sedimentation homogeneous solvent after correction of s and D to standard conditions.  Third, the 

sedimentation of a macromolecule in a large linear density gradient was simulated, and it was 

verified that the calculated distribution after long times converged to the thermodynamically 

predicted equilibrium distribution of a Gaussian band with the correct molar mass and density (Eq. 

5.260 of [40]).  Finally, the Lamm equation solution was found to be consistent with an 

approximate analytical solution for the special case of diffusion-free sedimentation in a density 

gradient from compressible solvents [33].  
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 The model for inhomogeneous media was incorporated in several sedimentation models of 

SEDFIT for the prediction and modeling of macromolecular sedimentation through a dynamically 

formed density and viscosity gradient.  Two different experimental configurations were explored.  

Figure 1 (top panel) shows the changes in density across the solution column from the 

sedimentation of 2.5 M CsCl after conventional uniform loading.  As the co-solute concentration 

increases close to the bottom, conditions for neutral buoyancy and flotation for a protein are 

generated (top panel, bold line).  The calculated sedimentation profiles of a hypothetical 500 kDa 

protein is shown in the middle and lower panel.  The initial sedimentation resembles the ordinary 

formation of a boundary in the meniscus region and the accumulation of material with a steep 

gradient close the bottom of the cell.  After a short time, however, the increasing density of the co-

solute at the bottom causes the macromolecule to float back from the bottom of the cell towards 

the evolving point of neutral buoyancy.  Combined with the continuing sedimentation from the 

sedimentation boundary in the meniscus region, this process concentrates the protein in a peak that 

approaches the Gaussian shape well-known for isopycnic sedimentation (Figure 1, middle panel).  

Clearly, the calculated macromolecular sedimentation profiles contain information about its molar 

mass, sedimentation coefficient, as well as partial-specific volume.  

 Even if the co-solute concentration is far below the threshold required to establish neutral 

buoyancy of the macromolecule, its redistribution can cause significant effects on the 

macromolecular concentration profiles.  This is illustrated in Figure 2, which shows the 

concentration distribution of a 200 kDa protein sedimenting in 1 M CsCl.  While the 

macromolecular sedimentation takes place, the co-solute also redistributes and spans 

concentrations from 0.76 M near the meniscus to 1.29 M near the bottom (at the end of the time 

interval shown in Figure 2).  This leads to a deceleration of the sedimentation boundary as 
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compared to the sedimentation in a uniform solvent (dotted line in Figure 2).  More striking is a 

concentration increase in the ‘plateau’ region towards the bottom of the cell.  This is not due to 

back-diffusion, but due to the differentially decreasing sedimentation rate with higher radii, a 

consequence of which is the continuous accumulation of material in the region that forms the 

plateau in homogeneous solvents.  A similar effect has been observed by Dishon et al. in the 

approximate Lamm equation solutions in the rectangular geometry [17].  However, a qualitatively 

new feature is a negative slope in the ‘plateau’ region close to the boundary.  This is a result of the 

dilution of the co-solute, which locally increases the buoyant molar mass and sedimentation 

coefficient of the macromolecules.  This increase can produce sedimentation coefficients higher 

than those at the hinge point of the co-solute, and thus lead to an accumulation of material at the 

leading edge of the boundary.  This effect was found to be more pronounced with a lower ratio of 

the macromolecular to the co-solute sedimentation coefficient (Figure 2, lower panel).  

 The model was implemented in SEDFIT for the non- linear regression of macromolecular 

sedimentation parameters, given sets of concentration distributions.  When normally distributed 

noise of (1% of the loading signal) was added to the data in Figure 1 and 2, they could be analyzed 

with the independent species model similar to ordinary sedimentation velocity data in 

homogeneous solvents, but with the effective partial-specific volume as an additional (optional) 

fitting parameter (data not shown).  All parameters converged to the values underlying the 

simulations, although slightly slower than in the case of uniform solvents.  This is attributed to 

some correlation between the effective partial-specific volume and the remaining parameters, in 

particular at the smaller density gradients.  

 As an experimental test for the validity of the presented model for the sedimentation in 

dynamic density gradients, sedimentation velocity experiments in cesium chloride solutions were 
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performed.  Figure 3 shows the absorbance profiles of at 83 kDa protein in 1.43 M cesium 

chloride (initial density 1.183 g/ml).  The sedimentation profiles are substantially different from 

those obtained in dilute solution (data not shown).  Qualitatively, the data confirm the predicted 

deceleration of the boundary and the compression of the scans in the bottom region, as well as the 

increasing slope of the ‘plateau’ near the bottom region in the later scans (Figure 3).  It should be 

noted that at the conditions used, this region is free of back-diffusion (as measured by control 

experiments at lower CsCl concentration).  Also visible is the predicted boundary anomaly from 

the local density decrease in the half of the solution column closer to the meniscus, which leads to 

a transient small negative slope of the ‘plateau’ (Figure 3, lower panel).  This effect is here less 

pronounced than calculated in the simulation of Figure 2 due to the larger diffusion coefficient of 

the protein.  However, it has been reproducibly observed in further experiments at high CsCl 

concentration (data not shown).   

For the quantitative analysis, the polynomial expressions of [20] for D(c) and s(c) were 

used to predict the sedimentation of CsCl, and the resulting density and viscosity profiles were 

inserted in the Lamm equation model.  Because of the high rotor speed, corrections for the 

compressibility of water were also included [33] (although this effect is smaller than that of the 

redistribution of the co-solute).  The non- linear regression showed some correlation between the 

apparent partial-specific volume, the sedimentation coefficient, and the bottom position of the 

centrifuge cell.  Therefore, the s20,w value was held constant at 5.05 S, the value predicted from 

hydrodynamic modeling of the crystal structure [41], which compares well with the value of 5.01 

S measured in phosphate buffered saline (PBS), and the bottom location was estimated from a 

initial scan of the transmitted intensity.  Also fixed were the molar mass and the partial-specific 

volume of the protein under standard conditions, both calculated from the amino acid sequence.  
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With the meniscus position and the apparent partial-specific volume φ’ of the protein in 1.43 M 

cesium chloride as the only floating parameter, a reasonable fit with a root-mean-square (rms) 

deviation of 0.0099 OD was achieved (Figure 3, solid lines), with φ’ = 0.762 ml/g.  (When time-

invariant noise was considered in the model, the fit converged to a value of φ’ = 0.760 ml/g, with 

an rms deviation of 0.0064 OD, data not shown).  The increase in the apparent partial-specific 

volume in the presence of 1.43 M cesium chloride would correspond to a hydration of 0.20 g/g, if 

there was no preferential binding of the co-solute to the protein, although the latter cannot be 

excluded.  Overall, a reasonable quantitative and a very good qualitative agreement of the 

experimental data with the Lamm equation model was found, supporting the validity of the model. 

 A second configuration theoretically explored was a self- forming density gradient in the 

synthetic boundary configuration of analytical zone centrifugation [10].  Figure 4 shows the 

simulated co-solute and macromolecular distributions for a dilute solution of protein which is 

layered on top of a solution containing 2.5 M CsCl.  Although a relatively small density difference 

(e.g., from 150 mM NaCl) is sufficient for gravitational stability of the protein layer, the purpose 

of the high CsCl concentration in the present context is to generate a density gradient that permits 

isopycnic separation of species with different density [13].  The Top Panel in Figure 4 shows the 

redistribution of the CsCl, its diffusion into the protein lamella with a steep concentration gradient, 

and the formation of a concentration gradient along the whole solution column.  In this 

configuration, the CsCl gradient is established more rapidly then in the homogeneous loading 

conditions (Figure 1).  The protein distributions are indicated in the middle and lower panel of 

Figure 4.  Interestingly, due to the steep initial density gradient an initial concentration of the 

protein in the region of the lamella takes place, analogous to the boundary anomaly in the 

conventional loading situation.  Under some conditions, this effect was predicted to produce a 
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series of initial band profiles increasing in height, qualitatively consistent with experimental scans 

(J. Lebowitz, unpublished observation).  After this period of concentration, the band broadens 

again and approaches the position of neutral buoyancy.  In the simulations, it was found that the 

extent of this sharpening effect strongly depends on the initial density gradient, and the 

macromolecular diffusion and sedimentation coefficient.  Small diffusion coefficients were also 

found to generate stronger asymmetry of the bands.  As in the conventional loading configuration, 

the implementation in SEDFIT permits analytical zone centrifugation data to be modeled to 

extract molar mass, effective partial-specific volume, and the sedimentation coefficient s20,w from 

experimental data.  
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Discussion 

The sedimentation of macromolecules through inhomogeneous solvents is of great practical 

importance, but its theoretical description is highly complex.  In the present paper, a new 

theoretical model is presented for the sedimentation in dynamic gradients from sedimenting co-

solutes.  For the first time, the model permits the prediction of the complete evolution of the 

macromolecular concentration profiles across the solution column, and can be used to analyze 

experimentally measured macromolecular concentration distributions, similar to whole boundary 

modeling approaches in homogeneous solvents.  Although the model is based on several 

simplifying assumptions, it still captures essential features and provides a realistic picture of the 

sedimentation process, as judged by the agreement with the experimental data from the 

sedimentation of a protein in high CsCl solutions.   

One limitation of the model is that it is based on the two-component Lamm equation, 

which is strictly valid only if cross-terms in the diffusion coefficients are negligible (Eq. 1.61-1.63 

in [34]).   In theory, this requirement is fulfilled in the absence of interaction of the macromolecule 

with the co-solute, and negligible preferential solvation.  Clearly, many conditions where density 

gradients are used in practice will violate this requirement, and this may constitute a serious 

drawback for a quantitative analysis of the detailed boundary shapes.  However, the analysis of 

experimental data (Figure 3) indicates that even in the presence of significant preferential 

solvation, its consequences can apparently be captured well by a change in the macromolecular 

density increment, or apparent partial-specific volume, without considering flows from cross-

diffusion.  This indicates that under the conditions used, contributions to the macromolecular 

flows from cross-diffusion may be small, possibly due to the fact that the relative concentration 

gradients of the co-solute remain small, even though they can already generate a significant 
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mechanical effect on the macromolecular buoyancy.  Further, the model also neglects the 

dependence of the solvation on the local co-solute concentration, and treats it instead as being 

constant throughout the entire sedimentation process.  Again, this is approximation may be 

justified if the relative changes of co-solute concentration remain small throughout the solution 

column.  These simplifications seemed to still provide a realistic picture of the sedimentation 

process in Figure 3, but more experience will be required to generalize this observation, and to 

explore if the observed change in buoyancy allows to quantitatively measure hydration or 

preferential solvation parameters [36].  (It should be noted that these considerations about co-

solute sedimentation and redistribution are only of second order or negligible, if the effects of co-

solutes are evaluated from a series of experiments with different loading concentrations of co-

solute or macromolecules.  Also, it should be noted that many co-solutes may not generate 

significant density gradients.) 

Frequently, the characterization of proteins is desired in the presence of high 

concentrations of co-solutes, where preferential solvation occurs.  For example, they may be 

required for stabilizing proteins, or for density matching of detergents in the study of membrane 

proteins.  Preferential solvation can also be very important in the context of protein-protein 

interactions induced by protein-solvent interactions [42, 43].  The current method could extend 

sedimentation velocity as a quantitative tool to conditions where such co-solutes generate density 

gradients.  It should be noted that the whole boundary modeling is exquisitely sensitive and the 

effect of density gradients may be measured at co-solute concentrations where preferential 

solvation is absent or small, such as with dynamic density gradients produced by H2O/D2O 

mixtures.   

 Most of the qualitative features in the macromolecular sedimentation profiles caused by 
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density gradients are well-known.  Beyond flotation and the formation of an isopycnic band, 

which usually requires relatively high densities, there are also profound changes in the 

sedimentation profiles at much lower densities.  These consist in a deceleration of the 

sedimentation boundary, which results in the continuous accumulation of macromolecules in the 

region where in homogeneous solvents a constant plateau would be formed [17].  This is also 

observed in static density gradients from compressible solvents [44, 45].  A boundary anomaly 

that is characteristic for the dynamic nature of the density gradient is the local inversion of the 

leading edge of the boundary (lower panels in Figure 2 and Figure 3).  The inversion is 

gravitationally stabilized by the underlying density gradient of the co-solute.  This feature may 

appear not unlike the Johnston-Ogston effect [46, 47], although the interaction is mediated through 

hydrostatic density effects between a sedimenting small co-solute and a macromolecule, rather 

than the hydrodynamic interaction between two macromolecules.  In analytical zone 

centrifugation, the anomaly corresponding to the boundary inversion is an initial sharpening of the 

bands to concentrations above the loading concentration.   

It is clear that the analysis procedures for uniform solvents cannot be applied to density 

gradient sedimentation.  Even at co-solute concentrations that do not lead to flotation, the 

boundary distortions do not permit modeling without consideration of the gradient.  For example, 

because of the absence of a true plateau, no weight-average sedimentation coefficients can be 

defined through second-moment mass balance consideration [44].  As a first step to enable a more 

quantitative interpretation of density gradient centrifugation by direct boundary modeling, the 

Lamm equation model was implemented for non- linear regression with the independent species 

model of SEDFIT.  This requires the prediction of the density gradient, which may be 

accomplished by taking sedimentation parameters from tabulated data in the literature, as in the 
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present work, or by independently measuring the co-solute sedimentation profiles with the 

interference optical detection system.  As can be expected, if sufficiently large gradients exist, this 

permits the determination of molar mass, sedimentation coefficient, and an effective partial-

specific volume.  Although the extension of the independent species analysis to a continuous 

sedimentation coefficient distribution c(s) and molar mass distribution c(M) [30] is possible, this 

approach was not explored.  Since the sedimentation profile in density gradients can depend much 

stronger on the molar mass and partial-specific volume of the macromolecules than in 

homogeneous solvents, the approximation of a single weight-average frictional ratio for the entire 

macromolecular population may not be sufficient to model polydisperse mixtures.  At conditions 

of strong density gradients and macromolecules that are heterogeneous with regard to their 

density, extensions to multi-dimensional distributions ( , )c s v or ( , , )c s M v  may be required.  One 

could expect that sedimentation data from the complete transport process towards an isopycnic 

separation condition contain enough information to define such an extended characterization of a 

macromolecular mixture.   
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Appendix 

In the theory section, it was shown that the finite element solutions for sedimentation with 

buoyancy and viscosity gradients requires the calculation of tensors 

(1*)
l,kj ( )( )

b
l j km

P P r P r rdr= ∂ ∂ ∂ ∂∫A  and (2*) 2
ln,kj ( )

b
l n j km

P P P P r r dr= ∂ ∂∫A .  The functions P are 

defined as triangular hat functions according to Eqs. 4, based on a division of the solution column 

between the meniscus m and the bottom b into n radial grid points rk (which can be static and 

equidistant, as in the Claverie scheme [37], or logarithmically spaced and time-dependent, as in 

the moving frame of reference [24]).  Because they are overlapping only for identical or 

neighboring elements, the integral (1*)
kjl,A  is nonzero only if both l and j equals k, k-1, or k+1.  

Similarly, (2*)
kjln,A  is nonzero only if n, l, and j equal k, k-1, or k+1.  This considerably simplifies the 

calculations.  The viscosity gradients α(t) and the buoyancy gradients β(t) are expressed through 

the vectors αl(t) and βn(t), respectively, which are defined via Eq. 5 on the same grid of radial 

points.  This allows analytical expressions to be derived for the matrices ∑ α=
l lt (1*)

kjl,
*)1( )( AA  

and ∑ βα=
nl nlt

,
(2*)
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For the corner elements of )(*)2( tA , we obtain 
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and for all other elements 
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If buoyancy and viscosity gradients are absent and all αl and βn equal unity, these elements 

)(*)1( tA  and )(*)2( tA  are identical to the matrices A(1) and A(2) for homogeneous solvent as given 

in Eqs. A2 and A3 in [24] and [49].   

Interestingly, the tensor (1*)
l,kj ( )( )

b
l j km

P P r P r rdr= ∂ ∂ ∂ ∂∫A  underlying the matrix )(*)1( tA  

is identical to the tensor Wkj,l that was previously used to describe diffusion fluxes of 
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macromolecules with hydrodynamic or thermodynamic non-idealities (Eq. A6 in [24]); essentially 

it describes any radially dependent diffusion.  No relationship of the tensor (2*)
kjln,A  with any tensor 

previously used in the context of sedimentation is known.  As an alternative to the approach 

presented here, it should be possible to also express the sedimentation fluxes in the presence of 

density and viscosity gradients within the framework previously derived for concentration 

dependent sedimentation (i.e. using the tensors Ukji defined in Eq. A5 in [24]), if one reduces the 

product of the local viscosity and buoyancy into a single radial-dependent factor.  However, as can 

be seen from the cross-terms of neighboring buoyancy and viscosity coefficients in Eq. A2b 

above, this approach would exhibit lower accuracy.  Further, use of the previously described 

framework with tensors U and W is numerically less efficient, in particular for static solvent 

gradients.  It is more advantageous, therefore to employ the expressions for the matrices *)1(A  and 

*)2(A  given above to replace the ordinary propagation matrices A(1) and A(2) as described in the 

theory section.    

These matrix elements, their relationships, and the corresponding expressions in C code 

were derived using the symbolic mathematics toolbox of MATLAB (The Mathworks, Natick, 

MA), and can be obtained from the author on request.    
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Figure Legends  

 

Figure 1:  Sedimentation in a self- forming density gradient in conventional loading configuration.  

Top Panel:  Calculated density profiles generated by the sedimentation of 2.5 M CsCl at 60,000 

rpm (in time- intervals of 600 sec).  The initial density is 1.31 g/ml, which is below the density of 

neutral buoyancy for a protein of partial-specific volume 0.73 ml/g.  With time, the increase in 

concentration close to the bottom generates densities that permit flotation of the protein.  The 

evolution of the point of critical density (1.37 g/ml) is shown as a bold solid line, and its 

projection to the radius-time plane as a dotted line. Middle Panel:  Sedimentation profiles of a 

protein with a molar mass of 500 kDa, a partial-specific volume of 0.73 ml/g, and a sedimentation 

coefficient of s20,w = 18 S.  Shown are the concentration distributions at 300 sec (solid line), 3,000 

sec (dashed line), 6,000 sec (dotted line), 9,000 sec (dash-dotted line), 12,000 sec (solid line), 

15,000 sec (dashed line), and 30,000 sec (dotted line).  Lower Panel:  Contour plot of the 

evolution of the macromolecular concentration distribution.  (It should be noted that the time-scale 

is in 104 sec, which does not permit resolving the very early stages that are included in the middle 

panel.)  The bold dotted line indicates the radii with neutral buoyancy conditions calculated from 

the sedimentation of the co-solute, as shown in the Top Panel.   

 

Figure 2:  Sedimentation in a self- forming density gradient in conventional loading configuration 

with lower concentration of co-solute.  Top Panel:  Concentration distributions calculated for a 

200 kDa protein ( v  = 0.73 ml/g, s20,w = 10 S) sedimenting at 60,000 rpm in 1 M CsCl.  Data are 

shown with time-intervals of 600 sec.  For comparison, the sedimentation profiles calculated for a 

constant homogeneous solvent at ρ = 1.126 g/ml and η = 0.952 mPa×s (the density and viscosity 
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of 1 M CsCl) are shown as dotted lines.  Lower Panel:  Detailed view of the plateau region of the 

calculated concentration profiles for a protein of 150 kDa with a sedimentation coefficient s20,w of 

5 S sedimenting at 60,000 rpm in 1 M CsCl.   

 

Figure 3:  Experimental absorbance profiles from the sedimentation of a protein in a dynamic 

density gradient (circles) and best- fit model (solid lines).  Anthrax protective antigen [50] was 

diluted at a concentration of 0.45 mg/ml into PBS with 1.43 M CsCl (initial density 1.183 g/ml), 

and sedimented at a rotor speed of 60,000 rpm and a rotor temperature of 25 °C in an Optima 

XLA/I analytical ultracentrifuge (Beckman Coulter, Fullerton, CA).  Data shown in the upper 

panel are the absorbance profiles measured at 280 nm in time intervals of 730 sec.  The data were 

modeled using finite element Lamm equation solutions for the sedimentation of CsCl (with the 

polynomial approximations for the non- ideal sedimentation parameters reported in [20]), together 

with tabulated data for the concentration dependences of the density and viscosity of CsCl 

solutions [51] for dynamically updating the local density and viscosity in the Lamm equation 

solution Eq. 8 for the sedimentation of the protein.  Also included were corrections for the 

compressibility of water [33].  For fitting the data, the known protein molar mass and the partial 

specific volume v  from the amino acid sequence was used, and its sedimentation coefficient s20,w 

was fixed to the value of 5.05 S predicted from the crystal structure [41].  The apparent partial 

specific volume φ’ was treated as fitting parameters (together with the meniscus of the solution 

column), converging to a value of 0.762 ml/g with a final root mean square deviation of the fit of 

0.0099 OD.  The lower panel provides a more detailed view of the boundary anomaly due to the 

hydrostatic interaction of the protein and the co-solute:  the experimental scans at 2570 sec (solid 

line) and 4030 sec (circles) are shown and the corresponding theoretical profiles (for clarity, the 
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scans are offset).  

 

Figure 4:  Simulated analytical zone centrifugation in a self- forming density gradient.  The 

distributions are calculated for a 1 mm layer of a protein solution in PBS on top of a 9 mm 

solution of PBS with 2.5 M CsCl, at 60,000 rpm and 25 °C.  For the protein, a molar mass of 82.7 

kDa, a s20,w –value of 5 S, and v  = 0.77 ml/g was assumed, with a loading concentration of 1.  

Top Panel:  Calculated redistribution of CsCl with time.  Middle Panel:  Protein distributions at 

time intervals of 3000 sec (first distribution shown at 300 sec).  The dotted line indicates the 

protein layer at the start of centrifugation.  Lower Panel:  Contour plot of the evolution of the 

protein concentration distribution.   
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