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Abstract   The effects of solvent compressibility on the sedimentation behavior of 

macromolecules as observed in analytical ultracentrifugation are examined.  Expressions for the 

density and pressure distributions in the solution column are derived and combined with the 

finite element solution of the Lamm equation in inhomogeneous media to predict the 

macromolecular concentration distributions under different conditions.  Independently, analytical 

expressions are derived for the sedimentation of non-diffusing particles in the limit of low 

compressibility.  Both models are quantitatively consistent and predict solvent compressibility to 

result in a reduction of the sedimentation rate along the solution column and a continuous 

accumulation of solutes in the plateau region.  For both organic and aqueous solvents, the 

calculated deviations from the sedimentation in incompressible media can be very large and 

substantially above the measurement error.  Assuming conventional configurations used for 

sedimentation velocity experiments in analytical ultracentrifugation, neglect of the 

compressibility of water leads to systematic errors underestimating sedimentation coefficients by 

in the order of 1% at a rotor speeds of 45,000 rpm, but increasing to 2 – 5 % with increasing 

rotor speeds and decreasing macromolecular size.  The proposed finite element solution of the 

Lamm equation can be used to take solvent compressibility quantitatively into account in direct 

boundary models for discrete species, sedimentation coefficient distributions or molar mass 

distributions.  Using the analytical expressions for the sedimentation of non-diffusing particles, 

the ls-g*(s) distribution of apparent sedimentation coefficients is extended to the analysis of 

sedimentation in compressible solvents.  The consideration of solvent compressibility is highly 

relevant when using organic solvents, but also in aqueous solvents when precise sedimentation 

coefficients are needed, for example for hydrodynamic modeling.  
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Introduction 

Analytical ultracentrifugation is one of the classical first principle techniques of physical 

chemistry for the study of macromolecules [1, 2].  It has significant applications both in the study 

of biomolecules, in particular proteins and nucleic acids, as well as the study of synthetic 

polymers.  Sedimentation equilibrium permits the determination of thermodynamic quantities, 

such as the molar mass and mass distribution and the characterization of reversible 

macromolecular interactions.  The transport process observed in sedimentation velocity 

experiments additionally contains information, for example, on hydrodynamic shape.  Because 

the sedimentation rate of macromolecules in the gravitational field is strongly size and shape 

dependent, the size-distribution of macromolecules in solution can be characterized with 

relatively high precision and resolution (for recent reviews, see, e.g., [3-8]).   

 One important consideration in ultracentrifugation experiments is the generation of 

pressure from the solution column in the gravitational field, which can influence the 

thermodynamic properties and conformation of the macromolecules under study.  It is well-

known that pressure can sometimes significantly affect the equilibrium constants for protein 

complex formation and, for example, lead to complex dissociation.  More often, however, this 

requires pressures higher than those generated in the ultracentrifuge [2].  A more fundamental 

and universal pressure effect that in theory affects any sedimentation experiment is the 

compressibility of the solvent, since solvent density changes across the solution column will 

change the buoyancy of the macromolecule, and thus their sedimentation behavior.  This is a 

practical concern primarily in sedimentation velocity experiments and sedimentation equilibrium 

experiments of small molecular weight solutes where higher rotor speeds are required.   

Although it is commonly assumed that consideration of solvent compressibility may be 
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required for organic solvents but not for aqueous solvents, their compressibility is not too 

dissimilar:  While the value of the compressibility coefficient for water is 4.59×10-4/MPa, it is 

only twofold larger for toluene (8.96×10-4/MPa), and little more than threefold larger for some of 

the most compressible organic solvents, such as acetone hexane.  In his book, Svedberg has 

given tables for density changes of water across the solution column at different rotor speeds, 

which can amount to > 1 % at the highest rotor speed permitted by modern instrumentation [1].  

This is large considering that the effects of density changes on the macromolecular 

sedimentation can be significantly amplified by the buoyancy of the macromolecule (a factor of 

3 – 4 for proteins in aqueous solvents).  Larger effects can be expected in organic solvents, 

which are common in analytical ultracentrifugation experiments of synthetic polymers [9-11] 

and supramolecular chemistry [12], but are also occasionally used in the study of biological 

macromolecules [13].  For example, Mosimann and Signer have described a 28 % change in 

buoyancy across the solution column for nitrocellulose sedimenting in acetone [14].   

Only a few early publications have addressed the effect of solvent compressibility [2].  In 

isopycnic density gradient sedimentation, water compressibility corrections were applied in the 

calculation of the particle density from the equilibrium position of the band at neutral buoyancy 

[15].  For sedimentation velocity analysis, Fujita has considered pressure as a parameter in the 

general framework of centrifugal flow equations [16].  Linearized approximations for corrections 

to the s-values and extrapolation procedures to zero pressures were developed by Oth and 

Desreux [17].  Fujita has noted that such extrapolation may not be possible with precision from 

experimental data [16], and has derived an approximate description of the effect of hydrostatic 

pressure on the concentration distribution of non-diffusing particles [18].  Schachman has 

described the use of density gradients generated by hydrostatic pressure to measure the 
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compressibility of polystyrene [19].  Despite this work, overall surprisingly few theoretical 

studies have addressed solvent compressibility, how it affects the macromolecular concentration 

distribution in detail, and how it can be taken into consideration in the data interpretation.  

Several decades ago, this may have been, in part, due to the relative smaller effect of 

compressibility in aqueous solvents, which were of main interest in the biochemical application 

of ultracentrifugation, and due to limited instrumental precision [2].  However, with current 

commercial detection systems (both the absorbance scanner [20, 21] and the laser interferometry 

system [22-24]) and when using current data analysis techniques, the precision of the 

sedimentation coefficients is well in the range where the effects of solvent compressibility are 

significant, even for aqueous solvents.   

Currently the most detailed analysis of sedimentation velocity is based on solutions of the 

transport equation for macromolecular diffusion and sedimentation in the gravitational field, the 

Lamm equation [25].  This approach permits the direct modeling of the data from the complete 

evolution of the macromolecular concentration distribution [26-30]. In recent years, new 

approximate analytical Lamm equation solutions [31, 32], and more efficient numerical 

algorithms for finite element solutions [33, 34] combined with algebraic noise decomposition 

techniques [35] have made this a routine tool for the study of macromolecular size and shape, 

sedimentation coefficient and molar mass dis tributions [36, 37], flotation coefficient distributions 

[38], protein self-association and hetero-association (e.g., [39-41]), non- ideal sedimentation 

processes in complex solvents [42], and many other processes.  However, despite the increasing 

level of detail and statistical precision of the data analysis, solvent compressibility was so far not 

taken into consideration.  

In the previous communication of this series, a general finite element model for 
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sedimentation in inhomogeneous media and its application to density gradients from sedimenting 

co-solutes is described [43].  In the present paper it is demonstrated how these finite element 

solutions of the Lamm equation can be adapted to predict and model the concentration 

distributions of sedimenting solutes in compressible solvents.  Because many macromolecular 

systems exhibit a complexity that exceeds the current potential for modeling with Lamm 

equation solutions, a method for calculating an apparent sedimentation coefficient distribution in 

compressible solvents is derived.  It is based on a new analytical expression in closed form for 

the sedimentation profiles of a non-diffusing particle in a linear compressibility approximation.  

These methods are implemented in the software SEDFIT (which can be downloaded from 

www.analyticalultracentrifugation.com) for the analysis of experimental data.  Features of 

sedimentation in compressible aqueous and organic solvents are discussed.  
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Theory 

The sedimentation and diffusion of a solute in the sector-shaped solution column of the 

analytical ultracentrifuge was given by Lamm as  
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with c(r,t) denoting the concentration at a distance r from the center of rotation and at time t, ω 

the angular velocity, D the diffusion coefficient, and s the sedimentation coefficient [25].  As 

shown in the preceding paper, one can consider the effect of locally varying solvent viscosity 

η and density ρ on the macromolecular sedimentation after transformation of the sedimentation 

and diffusion coefficient to standard conditions, combined with a local buoyancy and relative 

viscosity term:  
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with the partial-specific volume of the macromolecule v , the apparent partial specific volume φ’, 

the standard conditions denoted with the index 20,w (for water at 20 °C), and with the 

abbreviation α denoting the inverse of the relative viscosity, and with β denoting the relative 

buoyancy [43].  A finite element solution of Eqs. 1 and 2 is described in the preceding paper.  In 

the present context, the solvent density ρ(r,t) is assumed to arise only from solvent 

compressibility, i.e., ρ(r,t) = ρ(r).  Also, in the following, the absence of a pressure dependence 

of the macromolecule-solvent interactions will be assumed, and the fully solvated 

macromolecule will be used as a reference under standard conditions.  In this approximation, for 
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the present purpose the distinction between v  and φ’ in Eq. 2b can be dropped.  In the case of 

solvent compressibility, the relative viscosity and buoyancy coefficients α and β are independent 

of time, and it is assumed in the following that the viscosity is essentially independent of 

pressure (i.e.,  α = 1).  This case requires modifications in the propagation matrices of the 

standard finite element approach, but can be solved efficiently for both the static [26, 34] and 

moving frame of reference method [33].   

 The evaluation of Eq. 2b requires expressions for the radial dependence of the solvent 

density.  With the coefficient of compressibility κ, the differential density change can be 

described as d dpρ = ρκ .  The pressure change with increasing distance from the center of 

rotation is related to the rotor speed and solvent density as rdrdp 2/ ρω= .  Taken together, and 

with the boundary condition 0)( ρ=ρ m , the radial distribution of density and pressure can be 

found as 
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(with m denoting the meniscus of the solution column).  In the present paper, Eq. 3 is used to 

evaluate the radial dependent solvent density.  Fujita gives a considerably more complex 

expression for the pressure distribution [44] which could not be reconciled (likely due to 

typographical problems) with his underlying differential equation for pressure.  Eq. 3 is also 

slightly different from that reported in [2] (Eq. 98), which is based on an explicit expression for 

the density 0( ) (1 )p pρ ρ κ= +  [2, 17] as opposed to the differential dpd ρκ=ρ used here.  

However, these differences appear only in the third term of a Taylor expansion and are very 

small.  In the limit of vanishing compressibility, both expressions converge to the well-known 
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formula for the radial dependence of the pressure  

2)()( 222
0 mrrp −ωρ=        (4) 

(Eq. 99 in [2]).  A corresponding linear approximation for the density distribution at small 

compressibility may be obtained by truncating the Taylor expansion of Eq. 3 to its first term 

  2 2 2
0 0( ) [1 ( ) 2]r r mρ ρ κρ ω= + −      (5) 

 An important quantity for many data analysis procedures is the position rp(t) of the 

sedimentation boundary and the boundary shape from sedimenting non-diffusing particles.  The 

boundary position can be obtained by integrating the equation of motion for a particle in the 

centrifugal field, 2
p pdr dt srω= , with the initial condition of rp(0) = m.  For homogeneous 

solvents this results in the well-known expression 

( )2( ) exppr t m s tω=        (6) 

The corresponding boundary shape is described as a step-function with a constant plateau level 

cp that only experiences dilution with time according to the well-known expression  

   2
0( ) exp( 2 )pc t c stω= −       (7) 

In compressible solvents (or inhomogeneous solvents in general) Eqs. 6 and 7 do not apply 

because of the radial-dependent sedimentation rate.  This makes invalid the conventional 

analysis approaches that are implicitly based on Eq. 6, including the sedimentation coefficient 

distributions g*(s) (in the forms of dc/dr [45], dc/dt [46, 47], and ls-g*(s) [48] as well as G(s) 

[49-51]).  Therefore, in the following, expressions for the sedimentation of the non-diffusing 

particle through compressible solvents analogous to Eqs. 6 and 7 are sought.   

Assuming the absence of other complicating factors, such as a pressure dependence of the 

viscosity [2], the macromolecular frictional coefficient [44], and the partial-specific volume [19], 
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one can write a modified equation of motion for a non-diffusing particle in the centrifugal field 

as 

2
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[2].  It is possible to integrate this equation with the density distribution in the approximation of 

low compressibility (Eq. 5).  If the particle is initially at a radius r0, the position R at later time t 

is  
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with the abbreviations 2 2
0 2vχ ρ ω κ=  and 01 v ρΦ = − .  In the case r0 = m, Eq. 9 gives the 

evolution of the sedimentation boundary for non-diffusing particles rp(t), extending Eq. 6 to the 

case of compressible solvents in the limit of low compressibility. 

The function R(r0,t) also permits calculating the shape of the plateau, which is not 

constant as in the incompressible case (Eq. 7) but determined by the continuous deceleration of 

the particles and the corresponding accumulation of material at higher radii.  Let us consider the 

material M initially between the radii r0 and r0+∆r  
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(where c(r,0) denotes the initial concentration distribution, which usually is uniform c0), and the 

material M* between the propagated radial limits at a later time R(r0,t) and R(r0+∆r,t):   
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In the limit of no diffusion, because R(r0,t) is a monotonous function, no particles from outside 

the original interval between r0 and r0+∆r can be within R(r0,t) and R(r0+∆r,t) at the later time, 

and vice versa, no particles from within the original interval can escape the limits set by R(r0,t) 

and R(r0+∆r,t).  It follows that M = M*, and therefore Eqs. 10 and 11 are identical.   Dividing the 

right-hand sides of Eqs. 10 and 11 by ∆r, taking the differential to the infinitesimal limits and 

using the general relationship 
( )

( ) ( )
g z

a
d dz f x dx =∫  [ ( )]( )f g z dg dz leads to the shape of the 

concentration distribution in the ‘plateau’ region  
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The preceding considerations and the expression Eq. 12 is generally valid for the local 

accumulation and dilution of non-diffusing species that migrate in a sector-shaped volume 

according to any monotonous function R(r0,t).  As can be easily verified, for the propagation in 

homogeneous solvents with uniform loading concentration this leads to the well-known dilution 

rule for the constant solvent plateau, Eq. 7.  In compressible solvents with R(r0,t) as given in Eq. 

9, however, the function c(R,t) is not constant despite a uniform loading concentration c0: 
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For the practical calculation of the ‘plateau’ shape, it should be noted that Eqs. 12 and 13 are 

only implicitly defining the concentration distribution c(r,t), because the left-hand side refers to 

the concentration at the radius R(r0,t) after propagation, while the right-hand side depends on the 

initial position r0.  However, this is computationally no further difficulty, as the propagation is 
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known, and Eq. 9 can be used to evaluate the position for which the right-hand side of Eq. 13 

predicts the concentration.   

The expressions Eq. 9 and 13 completely define the shape of the concentration 

distribution of non-diffusing particles in the limit of low compressibility.  They can be used in 

the framework of the ls-g*(s) method [48] as a substitute of the conventional step-function (Eq. 2 

in [48]) to calculate the apparent sedimentation coefficient distribution of non-diffusing particles 

in compressible solvents.    

 

 

Results  

 First, as an example for the sedimentation in compressible solvents, Figure 1 shows 

simulated concentration profiles for 100 kDa polystyrene sedimenting in toluene (solid lines).  At 

the bottom of a 12 mm solution column at 60,000 rpm, pressures > 30 MPa are generated, which 

leads to a change in the density of toluene of ~ 2.5% ( or ~1.2% at in the middle of the solution 

column at 6.6 cm).  Although this change in density may appear small, the buoyant molar mass 

decreases by 10% at the base (~ 5 % at the midpoint).  As visible in Figure 1, this increasing 

buoyancy leads to a deceleration of sedimentation and consequently an accumulation of material 

in regions at higher radii.  As a consequence, besides the shift in the boundary position, there 

exists no plateau region (the distributions instead show a slope that increases with time) and 

significantly less radial dilution is observed.  As compared to the sedimentation in a 

homogeneous incompressible solvent (dotted lines), the changes in the concentration profiles are 

very substantial.  The deceleration of the sedimentation boundary is qualitatively very different 

from any other sedimentation process, such as concentration dependent non-ideal sedimentation.   
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 In order to validate the accuracy of the numerical results from the finite element Lamm 

equation solutions and the analytical expression for non-diffusing particles at low 

compressibility, the sedimentation profiles calculated with both methods are compared in Figure 

2.  Because the finite element method in the case of compressible solvents is numerically instable 

at D = 0 for both the static and moving frame of reference, very low diffusion coefficients were 

used, instead, to approach the limit of non-diffusing particles.  Figure 2 shows the original finite 

element Lamm equation solutions of Figure 1 (solid line), and the results with diffusion 

coefficients of 10-8 cm2/sec (dotted line) and 10-9 cm2/sec (dash-dotted line).  Also visible in 

Figure 2 are the analytically calculated distributions from Eq. 9 and 13 (dashed line), which are 

consistent with the limit of D = 0 approached by the series of finite element solutions.  Both 

methods lead to consistent boundary position as well as shape of the distribution in the non-

depleted region (the ‘plateau’ region).   

When examined in more detail, slight differences between the results from the two 

methods were found, which are related to the limit of low compressibility (Eq. 5) on which the 

analytical expression is based.  This introduces an underestimation of the compressibility effects 

at the base of the cell by approximately 2.5%.  This slight underestimation of the density gradient 

is visible best in ‘plateau’ levels that are slightly lower (~ 0.2 % error) as compared to the finite 

element results that are based on the accurate density distribution of Eq. 3 (Figure 2, lower 

panel).  Also, corresponding very small deviations in the boundary position were found (~ 0.002 

cm), leading to errors in the s-value of below 0.1 %.  As a control, when the finite element 

Lamm equation solutions were calculated with the same density distributions of Eq. 5, the 

differences between the analytical and finite element solutions in the ‘plateau’ region 

disappeared (< 10-4, data not shown).  This consistency suggests that for a given solvent density 
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distribution both the numerical and the analytical solutions are sufficiently accurate solutions of 

the Lamm equation, with deviations far below experimental precision.  The small differences 

observed in the lower panel of Figure 2 can be fully attributed to the assumption of small 

compressibility which is underlying the ana lytical expressions for sedimentation of non-diffusing 

particles.   

 Sedimentation in compressible solvents was implemented in SEDFIT fully compatible 

with the continuous sedimentation coefficient and molar mass distribution models, c(s) and c(M), 

respectively.  This is shown in Figure 3, where the data from Figure 1 (after adding 0.01 

normally distributed noise) were modeled as a sedimentation coefficient distribution from 

independently sedimenting macromolecular species with unknown weight-average frictional 

ratio f/f0.  The sedimentation coefficient distribution results in a single peak at the correct 

sedimentation coefficient of 0.8 S.  The non- linear regression of the weight-average frictional 

ratio f/f0 converged to a value of 2.82, virtually identical to that underlying the simulation.  As is 

the case in with data from the corresponding sedimentation in a homogeneous solvent, the 

weight-average frictional ratio is well-determined and permits here the calculation of both c(s) 

and c(M) distributions (as outlined elsewhere for homogeneous solvents, a reliable c(M) 

distribution cannot be calculated if either f/f0 is not well determined or if more than one peak is 

obtained in c(s)) [51].   

In many cases where the macromolecular sedimentation is more complex, for example, in 

multi-component systems with attractive or repulsive interactions, it can be desirable to achieve a 

more model- independent description of the sedimentation process.  This can be accomplished, 

for example, by using apparent sedimentation coefficient distributions, or by reducing the 

analysis to the determination of the weight-average sedimentation coefficient.  In compressible 
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solvents, this is complicated by the absence of a plateau region.  This does not allow to define the 

weight-average sedimentation coefficient through second moment considerations [2].  Further, 

the position-dependent buoyancy also makes problematic the application of the sedimentation 

coefficient distributions that utilize the laws for ideal sedimentation of a non-diffusing species in 

homogeneous solvents.  If solvent compressibility is ignored, the g*(s) method leads to a slightly 

asymmetric apparent sedimentation coefficient distribution with a peak at a too small s-value 

(dashed line in Figure 4).  The integral sedimentation coefficient distribution G(s) from the van 

Holde-Weischet method [49] is also centered at too small s-values, and would wrongly suggest 

the presence of repulsive non-ideal sedimentation (dotted line in Figure 4).  In both cases, the 

resulting distribution and the apparent weight-average s-value will depend on the data subset 

used for the analysis. 

Two methods are available for calculating the apparent sedimentation coefficient 

distribution taking solvent compressibility into account.  The first method is based on the 

analytical expressions Eqs. 9 and 13 substituting the conventional step-functions in the ls-g*(s) 

method [48] (Figure 4, solid line).  This makes the assumption of low compressibility since it 

uses the linearized density distribution of Eq. 5.  The second method is based on an exact 

description of the solvent density distribution, but approximates the limit of no diffusion of g*(s) 

by very low diffusion, which is achieved in the c(s) method when fixing the weight-average 

frictional ratio to a very large number [51] (circles in Figure 4).  Both approaches lead to 

consistent results.  Importantly, these distributions are also very similar to that obtained for 

simulated sedimentation in incompressible solvents under otherwise identical conditions.  This 

shows that the use of either method for calculating g*(s) in compressible solvents (in particular 

the computationally more efficient modified ls-g*(s) method) provides a very effective and 
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simple way of accounting for solvent compressibility.  Further, like the ordinary c(s) and ls-g*(s) 

distributions, their integration report a weight-average s at the correct value, independent of the 

data subsets considered.   

In the following, the effects of the compressibility of water on the sedimentation velocity 

analysis are examined.  Although water is less compressible than most organic solvents, the 

compressibility coefficient is still la rge enough to significantly influence macromolecular 

sedimentation.  Figure 5 shows the calculated concentration distributions of a 50 kDa protein 

with an s-value of 4 S sedimenting at 60,000 rpm (solid lines).  Compared to the sedimentation 

in an ideal incompressible solvent (dashed lines), the sedimentation boundary exhibits a 

retardation and distortion that is very significant.  The maximal difference between the 

concentration distribution in compressible water versus incompressible solvent are > 0.05, which 

is approximately 10fold above the experimental error in data acquisition.  If the compressibility 

of water is ignored, the analysis with a single species model leads to an error in the molar mass 

and sedimentation coefficient by +3 % and – 1.9%, respectively.  (These values refer to a fit with 

unknown meniscus position and baseline signal; if additionally systematic time- invariant and 

radial- invariant noise contributions are permitted, the errors in M and s are 1.4% and 0.9%, 

respectively.)  As shown in Figure 5, the residuals of such a fit are clearly systematic, and show 

the largest deviation close to the meniscus.   

The underestimation of the s-value and the magnitude and pattern of residuals when 

ignoring water compressibility were found to be qualitatively similar in simulations for proteins 

of different sizes.  However, as shown in Figure 6 (top panel), the errors made if water 

compressibility is ignored sharply increases with smaller molar mass of the solute.  (The precise 

influence on the result with the impostor model does also depend on other parameters, such as 
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fitting limits and baseline parameters considered.)  This error decreases with decreasing solution 

column (Figure 6, middle panel) and with decreasing rotor speed (Figure 6, lower panel).  For 

example, for ordinary solution column heights of 12 mm and a protein of 100 kDa, water 

compressibility influences the sedimentation coefficients by more than 1 % at rotor speeds larger 

than 45,000 rpm.  Larger effects were found for smaller macromolecules. 
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Discussion 

The effects of solvent compressibility on macromolecular sedimentation behavior can be 

quite large.  This has been known for a long time in the area of polymer characterization with 

organic solvents, but has generally not been appreciated for aqueous systems.  Although the 

compressibility of water is less than most organic solvents, it is not qualitatively and not much 

quantitatively different.  The present calculations show that for sedimentation velocity 

experiments it cannot be neglected in either case.  This is in line with observations made several 

decades ago.  In 1940, Svedberg recommended the consideration of solvent compressibility for 

organic solvents, but for aqueous solvents only at high rotor speeds and solution columns [1].  In 

1959, Schachman noted that large gains in experimental precision will make pressure corrections 

more important [2].  Despite even more substantial technological and computational 

improvements increasing the sensitivity and precision of sedimentation velocity in the recent 

years, little attention has been paid to solvent compressibility for either organic or aqueous 

solvents.   

One theoretical difficulty of describing sedimentation in compressible solvents is that the 

Lamm equation is based on the assumption of a constant partial-specific volumes for all 

components, and that it describes the sedimentation and diffusion coefficients in a volume-fixed 

frame of reference [52].  Without these assumptions, currently no rigorous theory for practical 

flow equations are known that describe macromolecular sedimentation in compressible solvents 

[52].  The approximation used in the present work relies on the solvent compressibility being 

small enough so that solvent and macromolecular flows do not significantly change the center of 

volume of the mixture, and the volume-based reference frame on the Lamm equation is close to 

the cell-based frame in which the measurement takes place.  Because of small absolute changes 
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in the partial-specific volume of the solvent and at dilute macromolecular cond itions this appears 

to be a reasonable approximation.  (For example, at 1 mg/ml polystyrene in toluene solution at 

50,000 rpm in a 12 mm solution column, the fractional volume expansion due to complete 

sedimentation of the polymer into the compressed regions of the cells can be estimated to be in 

the order of   10-5.)   

In the present paper, two new approaches are described to describe sedimentation under 

consideration of the solvent compressibility.  The first is based on numerical solutions of the 

Lamm equation, using the finite-element framework described in the accompanying paper for 

sedimentation in inhomogeneous media [43].  The second approach is a new analytical solution 

of the Lamm equation for non-diffusing particles in the approximation of low compressibility.  

The approximation of low compressibility leads to errors that in practice for ordinary solvents 

will be far below the detection limit.  Both methods currently are limited by neglecting the 

compressibility of the macromolecule itself [2], and the pressure dependence of the solvent 

viscosity.  However, if required the consideration of the two latter factors could be easily 

included in the framework of the finite element model.  The numerical solution of the Lamm 

equation permits the direct boundary analysis with models for independent ‘ideally’ sedimenting 

species, diffusion-deconvoluted sedimentation coefficient distributions c(s), and can in principle 

be combined with finite element models of interacting species.  The analytical solutions for non-

diffusing particles, on the other hand, permit a more ‘model- free’ description of the 

sedimentation process in the form of a ls-g*(s) distribution, which may be more appropriate, for 

example, for strongly concentration-dependent polydisperse polymer samples and could be 

coupled with extrapolation procedures to infinite dilution [53].  Together, both approaches 

extend the conventional tools for sedimentation velocity analysis to account for solvent 
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compressibility.  They are applicable to the modeling of experimental data in the software 

SEDFIT.  

The main feature of the predicted concentration distributions in compressible solvents is a 

decrease of the sedimentation velocity along the solution column, which leads to a deceleration 

of the boundary and to an increase of the macromolecular concentration with radius.  This is 

consistent with earlier calculations in the absence of diffusion [2, 18].  The deceleration is due to 

the increased buoyancy in regions of higher pressure and higher solvent density.  The difference 

can be very significant.  In the example simulated here, the sedimentation of polystyrene in 

toluene, it amounts to 10%, but it can be significantly larger for solvents with higher 

compressibility (such as acetone or hexane) and/or solutes that are closer in density to the solvent 

[14, 19].  Correspondingly, the effects on the boundary shape can also be quite large (Figures 1 

and 2).   

It should be noted that the qualitative observation of an increasing concentration with 

radius in the ‘plateau’ region is not sufficient to diagnose the presence of solvent compressibility 

effects, as a visually ‘sloping plateau’ may originate also from the sedimentation of small 

populations of aggregates with a very broad size-distribution, the sedimentation of a very small 

species (e.g., a buffer component that contributes to the detected signal) or optical artifacts.  

(Interestingly, the plateau patterns from compressibility correlate more with an ideally 

sedimenting very small species than with a broad distribution of large species; we did not 

observe artificial peaks at large s-values in the c(s) analysis if compressibility was unaccounted 

for, rather a small apparent increase in c(s) at the limit of the smallest s-value, data not shown).  

However, a much better qualitative feature for solvent compressibility is the deceleration of the 

sedimentation boundary, which produces large residuals with any model if compressibility is not 
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accounted for.  Fortunately, as a physical process that is independent of the sample under study, 

the extent of solvent compressibility is very predictable.  As described in the present paper, its 

effects can be calculated from first principles and quantitatively incorporated in the 

sedimentation model.   

The neglect of the solvent compressibility will lead to significant errors.  This is not 

surprising for organic solvents.  More unexpectedly, effects of compressibility of water can also 

be substantial.  According to the presented calculations, the neglect of compressibility will lead 

to an underestimation of the sedimentation coefficient by 1% or more for relatively large proteins 

studied at rotor speeds over 45,000 rpm, and larger deviations are predicted for smaller proteins 

and peptides and at higher rotor speeds (e.g., 2 – 2.5 % for a 10kDa protein at 50,000 – 60,000 

rpm).  Such deviations are significantly above the measurement errors.  The present estimates 

assume protein partial specific volumes of 0.73 ml/g, but larger effects will be seen in proteins, 

e.g., lipoproteins, with densities closer to the solvent.  But even for proteins of common partial-

specific volume, the hydrostatic compressibility of water can be of practical importance, for 

example, when comparing sedimentation coefficients obtained at different rotor speeds, or when 

precise absolute sedimentation coefficients are required for hydrodynamic modeling [54-57].     
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Figure Legends  

Figure 1:  Effects of compressibility in organic solvents:  Calculated sedimentation profiles for 

polystyrene with a molar mass of 100 kDa ( v = 0.917 ml/g, s20,w = 0.8 S) in toluene (ρ = 0.867 

g/ml, κ = 8.96×10-4/MPa,  η = 0.56 mPa×s [58]) at a rotor speed of 60,000 rpm, and a 

temperature of 25 °C.  The concentration distributions are shown in time intervals of 1500 sec.  

For comparison, the dotted lines indicate the sedimentation profiles for an incompressible 

solvent under otherwise identical conditions. 

 

Figure 2:  Comparison of analytical Lamm equation solution for non-diffusing particles in the 

low compressibility approximation with the finite element Lamm equation solution.  Top Panel: 

Sedimentation profiles calculated under the condition of Figure 1 for polystyrene in toluene 

(solid line).  Finite element Lamm equation solutions calculated with lower diffusion coefficient 

under otherwise identical conditions are shown as dotted line for D20,w of 10-8 cm2/sec and dash-

dotted line for D20,w of 10-9 cm2/sec, respectively.  The concentration distributions for a non-

diffusing species calculated analytically via Eq. 9 and 13 is shown as dashed line.  Lower Panel:  

Same distributions at higher magnification in the ‘plateau’ region. 

 

Figure 3:  Sedimentation coefficient distributions from the analysis of the sedimentation data in 

compressible solvents shown in Figure 1.  (Normally distributed noise of magnitude 0.01 was 

added.)  The sedimentation coefficient distribution c(s) with deconvoluted diffusion (solid line) 

was calculated with maximum entropy regularization on a confidence level of 0.9 [36], and with 

non- linear regression of the weight-average frictional ratio f/f0 [51].  Because f/f0 was well-

determined and a single peak is observed in c(s), the result can be transformed to a molar mass 
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distribution c(M) (inset).   

 

Figure 4:  Results from alternative sedimentation coefficient distributions applied to the data in 

Figure 1.  Distributions calculated without considering solvent compressibility: g*(s) distribution 

(calculated as ls-g*(s) [48] with the data subset from 7500 to 9000 seconds)  (dashed line), and 

van-Holde-Weischet distribution G(s) [49] applied to the data in Figure 1 (without noise and in 

time intervals of 300 sec) (dotted vertical line).  Two approaches for calculating the apparent 

sedimentation coefficient distribution g*(s) with solvent compressibility are shown: low-

compressibility approximation using the analytical expression for the sedimentation profiles of 

non-diffusing particles as kernel in the ls-g*(s) method (solid line); and a low-diffusion 

approximation from a c(s) distribution with fixed friction ratio at f/f0 = 20 (circles).  For 

comparison, the result of a conventional g*(s) distribution obtained from the sedimentation in a 

homogeneous incompressible solvent under otherwise identical conditions (crosses).   

 

Figure 5:  Calculated effect of compressibility of water.  Top Panel:  Sedimentation profiles were 

simulated for a 50 kDa protein with s20,w = 4 S at unit loading concentration, sedimenting at a 

rotor speed of 60,000 rpm in water with a compressibility coefficient of 4.59×10-4/MPa [58].  

Distributions are shown from 900 sec in intervals of 1500 sec (solid lines).  For comparison, the 

sedimentation profiles in an incompressible medium under otherwise identical conditions are 

shown as dashed lines. Lower Panel:  Residuals of modeling the sedimentation data without 

considering compressibility:  A single species model was fitted to the scans starting at 300 sec to 

11,400 sec in 300 sec intervals, allowing for an unknown meniscus position and baseline signal.  

The residuals of the best- fit are shown (in units of loading concentration), which has a root-
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mean-square deviation of 0.0054, and leads to an overestimation of the molar mass by 3% and an 

underestimation of the sedimentation coefficient by 1.9%.   The inset shows the residuals bitmap 

(scaled to represent residuals of ± 0.05 from black to white) for the fitted radius range of 6.007 

cm to 7.133 cm.  

 

Figure 6:  Relative errors of the estimates for the sedimentation coefficient (squares) and molar 

mass (circles) in the analysis of a single non- interacting species if the compressibility of water is 

ignored.  Top Panel:  Sedimentation profiles were simulated with a value of the compressibility 

coefficient of of 4.59×10-4/MPa [58], and analyzed by non- linear regression with a single-species 

model without compressibility.  Results are based on a 12 mm solution column, a rotor speed of 

60,000 rpm, and simulated sedimentation of molecules with 500 Da and 0.15 S, 750 Da and 0.23 

S, 1 kDa and 0.3 S, 3 kDa and 0.6 S, 10 kDa and 1.5 S, 50 kDa and 4 S, 100 kDa and 7 S, and 

200 kDa and 10 S, respectively.  Middle Panel: Influence of the solution column height.  

Sedimentation profiles were simulated for a 10 kDa protein with a sedimentation coefficient of 

1.5 S at 60,000 rpm with a compressibility coefficient of of 4.59×10-4/MPa [58].  Shown are the 

relative errors in the sedimentation coefficient when the data were modeled as a single species 

without considering compressibility.  Lower Panel:  Influence of the rotor speed for a 10 kDa 

protein with 1.5 S (squares), and for a 100 kDa protein with 7 S (circles).  The vertical line 

indicates the limit of the rotor speed for current commercial analytical rotors.  Simulations were 

based on a solution column of 12 mm.   
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